角谷静夫不动点定理.doc_第1页
角谷静夫不动点定理.doc_第2页
角谷静夫不动点定理.doc_第3页
角谷静夫不动点定理.doc_第4页
全文预览已结束

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

一、不动点算法又称固定点算法。所谓不动点,是指将一个给定的区域A,经某种变换(x),映射到A时,使得x=(x)成立的那种点。最早出现的不动点理论是布劳威尔定理(1912):设A为Rn中的一紧致凸集, 为将A映射到A的一连续函数,则在A中至少存在一点x,使得x=(x)。其后,角谷静夫于1941年将此定理推广到点到集映射上去。设对每一xA,(x)为A的一子集。若(x)具有性质:对A上的任一收敛序列xix0,若yi(xi)且yiy0,则有y0(x0),如此的(x)称为在A上半连续,角谷静夫定理:设A为Rn中的一紧致凸集,对于任何xA,若(x)为A的一非空凸集,且(x)在A上为上半连续,则必存在xA,使x(x)。J.P.绍德尔和J.勒雷又将布劳威尔定理推广到巴拿赫空间。不动点定理在代数方程、微分方程、积分方程、数理经济学等学科中皆有广泛的应用。例如,关于代数方程的基本定理,要证明(x)=0必有一根,只须证明在适当大的圆xR内函数(x)+x有一不动点即可;在运筹学中,不动点定理的用途至少有二:一为对策论中用来证明非合作对策的平衡点的存在和求出平衡点;一为数学规划中用来寻求数学规划的最优解。对于一个给定的凸规划问题:min(x)gi(x)0,i=1,2,m,在此,和g1,g2,gm皆为Rn中的凸函数。通过适当定义一个函数,可以证明:若上述问题的可行区域非空,则的不动点即为该问题的解。在1964年以前,所有不动点定理的证明都是存在性的证明,即只证明有此种点存在。1964年,C.E.莱姆基和 J.T.Jr.豪森对双矩阵对策的平衡点提出了一个构造性证明。1967年,H.斯卡夫将此证法应用到数学规划中去。其后,不动点定理的构造性证明有了大的发展和改进。H.斯卡夫的证明是基于一种所谓本原集,后来的各种发展皆基于某种意义下的三角剖分。现以n维单纯形Sn为例来说明这一概念,在此,。对每一i, 将区间0xi1依次分为m1,m2等分,m1m20。由著名的施佩纳引理,在Gi中必存在一三角形i,它的n+1个顶点yi(k)的标号分别为k(k=1,2,n+1)于是可得一列正数ij(j),使得(k)yk,k=1,2,n+1。根据i的作法,当ij时,收敛成一个点x。故yk=x,k=1,2,n+1。因(k)的标号为k,故ykCk,因而即x为所求的不动点。因此,求(x):SnSn的不动点问题就化为求 i(i=1,2,) 的问题。为了计算上的效果,除了上述的标号法之外,还有标准整数标号法、向量标号法等等。关于如何求i,有变维算法、三明治法、同伦算法、变维重始法等等,通过适当定义,可将上之Sn改为Rn或Rn中之一凸集。求一凸函数在一凸集上的极值问题也可化为求不动点问题。一般说来,这条途径适用于维数不高但问题中出现的函数较为复杂的情况。参考书目A.J.J.TalmanVariable Dimension Fixed Point Algorithms and Triangulations, Mathematisch Centrum, Amsterdam, 1980.二、Prof. Yuguang Xu (徐裕光 教授)( Kunming University, China (雲南省昆明學院))Fixed point theory and its applications(在台湾成功大学所作的报告)不动点理论研究的内容属于数学的非线性泛函分析和一般拓扑学范畴。研究出的结果被广泛应用于分析数学,力学,微分方程,控制理论,最优化理论,非线性规划,数理经济学和博弈论等应用性学科。(一)不动点理论的发展进程 一个简单的不动点问题(微积分中); 1909 年, Brouwer 的著名的不动点定理及一系列的论文创立了不动点理论; 1922 年 , 波兰著名数学家 S. Banach 给出了一个既简单又实用的压缩映射原理,它也是一个不动点定理。在简单的条件下, Banach 压缩映射原理不仅指出了映射不动点的存在性和唯一性,还提供了一种逼近不动点的方法; 1967 年,美国数学家 H. E. Scarf 找到了计算单纯形连续映射不动点的组合拓扑有限算法,这也就是 Brouwer 不动点定理的构造性证明;1941 年,日本数学家角谷静夫( Kakutani )的集值不动点定理为博弈论建立在数学基础上作了理论准备; 1968 年的 Fan Browder 不动点定理, 1972 年的 Himmelberg 不动点定理以及 Tarafdar 在 1987 年和 1992 年分别在拓扑线性空间和 H 空间建立的不动点定理; 美国数学家 Michael ( 1956 年), Deutsch 和 Kenderov ( 1983 年),应用集值分析中的连续选择原理在拓扑空间建立集值不动点定理和几乎不动点定理; 1990 年以后,关于不动点理论的研究达到一个高潮,在各种映射或空间条件下,讨论不动点,随机不动点,几乎不动点等,每年有上百篇论文发表,新的不动点定理和各种迭代逼近方法不断涌现。(二)不动点理论的四个研究方向1. 在拓扑空间研究“不动点性质”(使用同伦群),不动点的有限算法(组合拓扑); 丹麦数学家 Nielsen 研究不动点的个数( Nielsen 数),开创不动点类理论的研究,大陆数学家的工作; 一般度量空间或拓扑向量空间的连续映射的不动点问题不动点的存在性问题研究映射的连续性,紧性,空间的紧性,凸性,单值或集值不动点的迭代逼近问题研究多种迭代方法,收敛性(强,弱),收敛速度,误差分析,稳定性 应用集值分析中的连续选择原理在拓扑空间建立集值不动点定理和几乎不动点定理并应用于博弈论研究。(三)不动点理论主流方向的研究现状,及研究前沿期待解决的问题“一般度量空间或拓扑向量空间映射的不动点问题”是研究的主流。近 20 年来的研究发展主线: 迭代逼近算法的研究(从 Mann 迭代到杂交迭代等); 强伪压缩映射的不动点,强增生算子方程的迭代解(两者的联系); 迭代误差分析和稳定性研究; 有待解决的几个问题(一般情况下的收敛性问题, 迭代收敛的等价性问题,不动点存在性和迭代逼近的条件的协调性问题,关于 Schauder 猜想)。其次为“应

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论