真正数学速算法!!!.doc_第1页
真正数学速算法!!!.doc_第2页
真正数学速算法!!!.doc_第3页
真正数学速算法!!!.doc_第4页
真正数学速算法!!!.doc_第5页
已阅读5页,还剩2页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

真正数学速算法!数学速算法!速算技巧、乘法速算 一、十位数是1的两位数相乘乘数的个位与被乘数相加,得数为前积,乘数的个位与被乘数的个位相乘,得数为后积,满十前一。例:151715 + 7 = 225 7 = 35-255即1517 = 255解释:1517=15 (10 + 7)=15 10 + 15 7=150 + (10 + 5) 7=150 + 70 + 5 7=(150 + 70)+(5 7)为了提高速度,熟练以后可以直接用“15 + 7”,而不用“150 + 70”。例:17 1917 + 9 = 267 9 = 63连在一起就是255,即260 + 63 = 323二、个位是1的两位数相乘方法:十位与十位相乘,得数为前积,十位与十位相加,得数接着写,满十进一,在最后添上1。例:51 3150 30 = 150050 + 30 = 80-1580因为1 1 = 1 ,所以后一位一定是1,在得数的后面添上1,即1581。数字“0”在不熟练的时候作为助记符,熟练后就可以不使用了。例:81 9180 90 = 720080 + 90 = 170-7370-7371原理大家自己理解就可以了。三、十位相同个位不同的两位数相乘被乘数加上乘数个位,和与十位数整数相乘,积作为前积,个位数与个位数相乘作为后积加上去。例:43 46(43 + 6) 40 = 19603 6 = 18-1978例:89 87(89 + 7) 80 = 76809 7 = 63-7743四、首位相同,两尾数和等于10的两位数相乘十位数加1,得出的和与十位数相乘,得数为前积,个位数相乘,得数为后积,没有十位用0补。例:56 54(5 + 1) 5 = 30-6 4 = 24-3024例: 73 77(7 + 1) 7 = 56-3 7 = 21-5621例: 21 29(2 + 1) 2 = 6-1 9 = 9-609“-”代表十位和个位,因为两位数的首位相乘得数的后面是两个零,请大家明白,不要忘了,这点是很容易被忽略的。五、首位相同,尾数和不等于10的两位数相乘两首位相乘(即求首位的平方),得数作为前积,两尾数的和与首位相乘,得数作为中积,满十进一,两尾数相乘,得数作为后积。例:56 585 5 = 25-(6 + 8 ) 5 = 7-6 8 = 48-3248得数的排序是右对齐,即向个位对齐。这个原则很重要。六、被乘数首尾相同,乘数首尾和是10的两位数相乘。乘数首位加1,得出的和与被乘数首位相乘,得数为前积,两尾数相乘,得数为后积,没有十位用0补。例: 66 37(3 + 1) 6 = 24-6 7 = 42-2442例: 99 19(1 + 1) 9 = 18-9 9 = 81-1881七、被乘数首尾和是10,乘数首尾相同的两位数相乘与帮助6的方法相似。两首位相乘的积加上乘数的个位数,得数作为前积,两尾数相乘,得数作为后积,没有十位补0。例:46 994 9 + 9 = 45-6 9 = 54-4554例:82 338 3 + 3 = 27-2 3 = 6-2706八、两首位和是10,两尾数相同的两位数相乘。两首位相乘,积加上一个尾数,得数作为前积,两尾数相乘(即尾数的平方),得数作为后积,没有十位补0。例:78 387 3 + 8 = 29-8 8 = 64-2964例:23 832 8 + 3 = 19-3 3 = 9-1909、平方速算一、求1119 的平方底数的个位与底数相加,得数为前积,底数的个位乘以个位相乘,得数为后积,满十前一。例:17 1717 7 = 24-7 7 = 49-289参阅乘法速算中的“十位是1 的两位相乘”二、个位是1 的两位数的平方底数的十位乘以十位(即十位的平方),得为前积,底数的十位加十位(即十位乘以2),得数为后积,在个位加1。例:71 717 7 = 49-7 2 = 14-5041参阅乘法速算中的“个位数是1的两位数相乘”三、个位是5 的两位数的平方十位加1 乘以十位,在得数的后面接上25。例:35 35(3 + 1) 3 = 12-25-1225四、2150 的两位数的平方在这个范围内有四个数字是个关键,在求2550之间的两数的平方时,若把它们记住了,就可以很省事了。它们是:21 21 = 44122 22 = 48423 23 = 52924 24 = 576求2550 的两位数的平方,用底数减去25,得数为前积,50减去底数所得的差的平方作为后积,满百进1,没有十位补0。例:37 3737 - 25 = 12-(50 - 37)2 = 169-1369注意:底数减去25后,要记住在得数的后面留两个位置给十位和个位。例:26 2626 - 25 = 1-(50-26)2 = 576-676、加减法一、补数的概念与应用补数的概念:补数是指从10、100、1000中减去某一数后所剩下的数。例如10减去9等于1,因此9的补数是1,反过来,1的补数是9。补数的应用:在速算方法中将很常用到补数。例如求两个接近100的数的乘法或除数,将看起来复杂的减法运算转为简单的加法运算等等。、除法速算一、某数除以5、25、125时1、 被除数 5= 被除数 (10 2)= 被除数 10 2= 被除数 2 102、 被除数 25= 被除数 4 100= 被除数 2 2 1003、 被除数 125= 被除数 8 100= 被除数 2 2 2 100在加、减、乘、除四则运算中除法是最麻烦的一项,即使使用速算法很多时候也要加上笔算才能更快更准地算出答案。因本人水平所限,上面的算法不一定是最好的心算法 评分选定 1.时针与分针 分针每分钟走1格,时针每60分钟5格,则时针每分钟走1/12格,每分钟时针比分针少走11/12格。 例:现在是2点,什么时候时针与分针第一次重合? 析:2点时候,时针处在第10格位置,分针处于第0格,相差10格,则需经过10 / 11/12 分钟的时间。 例:中午12点,时针与分针完全重合,那么到下次12点时,时针与分针重合多少次? 析:时针与分针重合后再追随上,只可能分针追及了60格,则分针追赶时针一次,耗时60 / 11/12 720/11分钟,而12小时能追随及12*60分钟/ 720/11 分钟/次=11次,第11次时,时针与分针又完全重合在12点。如果不算中午12点第一次重合的次数,应为11次。如果题目是到下次12点之前,重合几次,应为11-1次,因为不算最后一次重合的次数。 2.分针与秒针 秒针每秒钟走一格,分针每60秒钟走一格,则分针每秒钟走1/60格,每秒钟秒针比分针多走59/60格 例:中午12点,秒针与分针完全重合,那么到下午1点时,两针重合多少次? 析:秒针与分针重合,秒针走比分针快,重合后再追上,只可能秒针追赶了60格,则秒针追分针一次耗时,60格/ 59/60格/秒= 3600/59秒。而到1点时,总共有时间3600秒,则能追赶,3600秒 / 3600/59秒/次=59次。第59次时,共追赶了,59次*3600/59秒/次=3600秒,分针走了60格,即经过1小时后,两针又重合在12点。则重合了59次。 3.时针与秒针 时针每秒走一格,时针3600秒走5格,则时针每秒走1/720格,每秒钟秒针比时针多走719/720格。 例:中午12点,秒针与时针完全重合,那么到下次12点时,时针与秒针重合了多少次? 析:重合后再追上,只可能是秒针追赶了时针60格,每秒钟追719/720格,则要一次要追60 / 719/720=43200/719 秒。而12个小时有12*3600秒时间,则可以追12*3600/43200/719710次。此时重合在12点位置上,即重合了719次。 4.成角度问题 例:在时钟盘面上,1点45分时的时针与分针之间的夹角是多少? 析:一点时,时针分针差5格,到45分时,分针比时针多走了11/12*4541.25格,则分针此时在时针的右边36.25格,一格是360/606度,则成夹角是,36.25*6=217.5度。 5.相遇问题 例:3点过多少分时,时针和分针离“3”的距离相等,并且在“3”的两边? 析:作图,此题转化为时针以每分1/12速度的速度,分针以每分1格的速度相向而行,当时针和分针离3距离相等,两针相遇,行程15格,则耗时15 / 1+ 1/12 =180/13分。 例:小明做作业的时间不足1时,他发现结束时手表上时针、分针的位置正好与开始时时针、分针的位置交换了一下。小明做作业用了多少时间? 析: 只可能是这个图形的情形,则分针走了大弧B-A,时针走了小弧A-B,即这段时间时针和分针共走了60格,而时针每分钟1/12格,分针1格,则总共走了60/ (1/12+1)=720/13分钟,即花了720/13分钟。 有过行测实战经验的朋友们都知道,数算题的难点不在解不出,而在难以在参考用时内解出,(数算参考用时20分钟,20题),以致许多朋友初次参加行测往往失误在数算用时太多,甚至因而导制考试失败。但同时,数算也是主要的拉分项目,选则放弃数算的朋友也往往难以取得高分,加重了申论考试的压力。 蔽人闲来偶得,分析近五年之国考数算真题,发现几无一题不能在60秒内将正解锁定。惊呀之余,以为天之所赐,诚惶诚恐,不敢专居一人所有。今以之分享,唯愿我论坛发扬光大,众坛友如心所愿! 先发2题,请共同探讨,同时望众位朋友有类似心得,一同分享! 1. 王师傅加工一批零件,每天加工20个,可以提前1天完成。工作4天后,由于技术改进,每天可多加工5个,结果提前3天完成,问,:这批零件有多少个? A 300 B 280 C 360 D 270 解析:这批零件数应能被20整除,并且减80能被25整除,答案只有B符合。用时30秒2. 某团体从甲地到乙地,甲、乙两地相距100千米,团体中一部分人乘车先行,余下的人步行,先坐车的人到途中某处下车步行,汽车返回接先步行的那部分人,全部人员同时到达。已知步行速度为8千米/小时,汽车速度为40千米/小时。问使团体全部成员同时到达乙地需要多少时间? A、5.5 小时 B、 5 小时 C、4.5小时 D、4 小时 解析从给出条件可以看出:两班人员走走停停,如要计算,虽然可能,但绝对不可行(理由如前所述);但可看出汽车一直在走,未曾停留,所以只要计算出汽车总用时即为所求。再看汽车往返来回,恰为甲乙丙地距离的2倍,得总用时:100*2/40=5小时,答案为B用时50秒 3. 某工作组有12名外国人,其中6人会说英语,5人会说法语,5人会说西班牙语;有3人即会说英又会说法,有2人既会说法又会说西;有2人既会说西又会说英;有1人这三种语言都会说.则只会说一种语言的人比一种语言都不会说的人多: A 1 B 2 C 3 D 5 解析用文氏定理速算:首先,至少会说一种话的人有:6+5+5-3-2-2+1=10人一种语言都不会的为12-10=2人至少会说两种语言的人有:3+2+2-2*1=5人只会说一种语言的人为:10-5=5人答案为5-2=3 选C用时60秒 4. 为了把2008年北京奥运会办成绿色奥运,全国各地都在加强环保,植树造林。某单位计划在通往两个比赛场馆的两条路的(不相交)两旁栽上树,现运回一批树苗,已知一条路的长度是另一条路长度的两倍还多6000米,若每隔4米栽一棵,则少2754棵;若每隔5米栽一棵,则多396棵,则共有树苗:( ) A.8500棵 B.12500棵 C.12596棵 D.13000棵 解析用4:5的比例关系巧解(X+275

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论