流体流量压强测量.docx_第1页
流体流量压强测量.docx_第2页
流体流量压强测量.docx_第3页
流体流量压强测量.docx_第4页
流体流量压强测量.docx_第5页
已阅读5页,还剩14页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

D3 流体测量D3.1引言 本章介绍本教程涉及的主要流动参数,如流体粘度、压强、流速和流量等的测量方法及流场显示技术,并以介绍测量方法的原理和功能为主。流体测量中用到的流体力学原理是流体力学基础理论的重要应用之一,只有在搞清基本原理的基础上才能正确掌握流体测量方法,认识每种方法的优点和局限性。同时也介绍流体测量的新技术和新进展,以拓宽视野。学习本章内容应同流体力学实验课结合起来进行。D3.1.1 流体粘度测量 1、 毛细管粘度计毛细管粘度计是根据圆管层流的泊肃叶定律设计的。图D3.1.1是一种毛细管粘度计的结构示意图。当被测流体定常地流过毛细管时,流量Q与两端压差p、管径R、毛细管长度l及流体粘度有关,在确定的毛细管上测量一定压差作用下的流量,即可计算流体粘度:(C3.4.11)对非牛顿流体,用毛细管粘度计测得的是表观粘度a 。毛细管粘度计结构简单,价格低,常用于测定较高切变率( 102 s 1)下的粘度。缺点是试测费时间,不易清洗,由于管截面上切变率分布不均匀、试样液面表面张力及管径突然变化对结果可造成误差。主要适用于牛顿流体。有的毛细管粘度计采用平板狭缝式。图3.1.1 图3.1.22、落球粘度计刚性圆球在粘性流体中匀速运动时阻力可用斯托克斯公式计算,相应的粘度为(D3.1.1)上式中 d为圆球直径,W为圆球重量,V为运动速度。落球粘度计就是根据此原理设计的,方法简单易行,但精度较低,一般用于粘度较大的流体(图3.1.2)。3、同轴圆筒粘度计同轴圆筒粘度计属于旋转式粘度计,结构如图D3.1.3所示,主要由两个同轴的圆柱筒组成,筒间隙内充满被测液体。当外圆筒以一定角速度旋转时,间隙内液体作纯剪切的库埃塔流动,因此同轴圆筒粘度计又称库埃塔粘度计。测量外圆筒的旋转角速度及内圆筒的偏转力矩M可计算液体的粘度(或表观粘度)及其他参数。对牛顿流体,-M曲线是通过原点的斜直线,由其斜率M / 计算粘度(D3.1.2)式中a、b、h分别为内外圆筒半径和液柱高。对非牛顿流体测得的是表观粘度a,并可根据测得的流动曲线计算非牛顿流体的各种特征参数。圆筒粘度计的主要缺点是圆筒间隙内的切变率分布不均匀,为减少测量非牛顿流体表观粘度的误差, 间隙应尽量小。圆筒粘度计适用于各种粘度、各种切变率的牛顿粘度测量,容易校准,使用方便,得到广泛应用。图D3.1.3图D3.1.44.圆锥平板粘度计圆锥平板粘度计的构造如图D3.1.4所示,锥角很大的圆锥顶点与水平平板接触,圆锥轴与平板保持垂直,圆锥与平板间的小楔角内充满被测液体。当圆锥和平板中的一个以恒角速度旋转时,测量另一个受到的力矩 M 可计算被测液体的粘度(D3.1.3)式中 为楔角,a 为液体接触部分平板半径。对非牛顿流体,测得流动曲线后,可计算有关参数。圆锥平板粘度计除具有测量范围大,试样用量少、容易清洗等优点外,最大的优点是楔角内被测液体中切变率处处相等,因此最适宜测量触变性流体的滞后环和应力衰减曲线。它的缺点是调整比圆筒粘度计困难,转速较高时惯性力、二次流和温度等因素可能引起误差。除了圆锥平板形式外还有圆锥圆锥,环-环等形式的粘度计,原理相似。D3.2压强测量D3.2.1静止流体压强测量1.单管测压计当测量液体压强时,常直接将一根上端敞口的细管放到被测位置(如图D3.2.1中A点),细管即构成单管测压计。在B点压强的作用下,被测液体自由液面在细管中上升高度(h)称为测压管高度(D4.3.3)该位置的压强即为g h。当测量负压气体时,常将测压管倒置插入液体贮罐中,液体被吸入细管内,液面上升高度为h,气体压强为-g h,如图D3.2.2所示。单管测压方法受种种条件限制,仅在少数情况下使用。图D3.2.1图D3.2.22.U形管测压计U形管内装有密度为m的液体,未测压时两支管中液面均受大气压作用, 保持同一水平面。测压时,被测压强p作用于一支管液面上,两支管液面不再维持水平,如图D3.2.3示,在等压面1-1上p +g h1=mghp = g(mh-h1)(D4.3.4)式中h1恒为正,h的符号当右支液面高于左支时为正,反之为负。当测量气体时,g h1可忽略不计。图D3.2.33.U形管差压计将U型管两端分别接入两个被测压强(p1、p2)时,构成一差压计,可测量两压强之差值(p1-p2)。当测液体压差时用D3.2.4A形式,当测气体压差时用图D3.2.4B形式,均忽略气体重量。所测压差为p = p1-p2 =m gh(D4.3.5)D3.2.4A D3.2.4B4.微压计当被测压强或压差很微小时,为提高测量精度应使用微压计。图D3.2.5倾斜式微压计原理如图D3.2.5所示, 实际上是将U形管的一支加粗成一容器,另一支倾斜放置(倾斜角),容器截面积(A1)比管截面积(A2)大得多,只要容器中液面略有变化(h1)便引起管中液面高度较大变化(h2),加上管子倾斜放置,液面读数可得到放大)被测压差为(D4.3.6)式中K=m g (sin+A2/A1)称为微压计常数。在实际倾斜式微压计上,K值标注在仪器上,工作液体为酒精。测量多点压强变化的多管式测压计的原理与倾斜式微压计相似(图D3.2.6)图D3.2.6以上介绍的几种测压计是利用液体静力学原理设计的测压计,称为液柱式测压计,是最简单,但也是最精确的测量流体静压强的方法,在实验室里经常应用。此外还有利用压强引起金属管发生弹性变形原理设计的机械式压力表,由于读数简便适于工程应用。利用各类传感器将压力信号转换为电信号及利用光学原理测量由压强引起的膜片弯曲等方法,由于动态响应好适用于流动压强的测量。D3.2.2 运动流体压强测量在B4.3.2中我们已讨论了平行直线流动中压强分布与静止液体压强分布一样,因此可将流动压强p称为流动静压强。在图D3.2.7中流体流过壁面上的垂直小孔,孔穴内静止流体与外部流动流体形成速度间断面,但分界面上压强是连续的,即孔内压强与流动静压强连续,测量孔穴内的静压强就代表壁面上的流动静压强。图D3.2.7在水平的流线上,若某位置的速度为零,称该点为驻点,压强称为总压p0 ,与其他位置的速度、压力关系为(6-4-5)或(6-4-6)式中p为流场静压强。 称为动压强。一、静压与总压的测量对管道内的均流和缓变流,在管壁上开小孔,称为测压孔。孔轴必须垂直壁面,孔径应尽量小(一般0.51mm),孔深与孔径之比h / d 3,边缘光滑。将测压孔与压力计相连就可测得壁面上的流动静压强,管内截面上的静压分布符合静力学基本方程。要直接测量流场中的压强,可用图D3.2.8 (a)所示的静压管,前端为封闭的流线型,侧壁开测压孔,内部压力通过压力计测定。静压管可在与来流成5角范围内准确地测量测压孔附近的静压。流线型封闭头对准来流时,头部中心形成一驻点。当这点开小孔并用管子连接到压力计时测得的压强为总压。这种管子叫总压管,如图D3.2.8(b)所示。也称为毕托(Pitot)管,是法国人毕托发明的。图D3.2.8二、动态压强测量由于液柱式压力计动作惯性太大,不能准确反映随时间变化的压强,动态压强通常是通过传感器测量的。压力传感器通过与流体接触的压敏元件如弹性膜片、绕结陶瓷、晶体、硅膜等感受压强,然后转换成电学量或光学量,通过仪表读出。 压力传感器的优点在于动作元件惯性小、动态响应好、体积小、读数方便。根据压力信号转换成电信号还是光学信号,可将动态压力计分成电学压力计和光学压力计两类。电学压力计通过压敏元件发生电容、电阻、电感、电势等电学量改变测量流体压强变化。电容式压力计具有较好的低频响应,而且感受压力的探头可做得非常小,缺点是电子线路较复杂。应变式压力计优点是电路简单稳定并直接使用交流电源,避免了直流放大器的零漂问题,主要缺点是对温度敏感。电感压力计的铁心可在线圈中运动,受压力作用时可引起线圈感应电流变化。压电式压力计的主要优点是可感受很高的频率,缺点是输出电势很小,不能测量压力平均值而只能感受压力变化值,因此适于测量动态压力波形。光学压力计的工作原理是在膜片上装有镜面,膜片在压力作用下发生弯曲,镜面上反射出的光线产生偏转,测量光线偏转量可得到压力变化值。光线偏转由并列的两个光电管输出信号不平衡量读出并记录下来,光线偏转还可直接由照相底片记录。主要缺点在于膜片频率响应不高。D3.3 流量、流速测量流速测量是指测量流体微团的速度,可得到流体内的速度分布;流量测量是指测量通过整个流道截面的流体量,可计算总流通过截面的平均速度。一般来说,流量测量容易实现,但更精细的分析需要测量速度分布。根据测量的方式,流速与流量测量可分为接触式和非接触式两类,前者通常要干扰流场,后者无干扰。D3.3.1 流量测量1堰堰是最古老的而又实用的测量明渠流量的工具,一直沿用至今,其基本原理在例B4.3.1A中作过介绍。根据堰口的形状可分为三角堰和矩形堰。三角堰流量公式为Q = K h5/2式中h为堰顶的淹深,K为特征常数(图D3.3.1b)。矩形堰流量公式为Q = K h3/2式中h为堰顶的淹深(图D3.3.1c)。图D3.3.12文丘里流量计文丘里流量计是运用文丘里管原理设计的管道流量计,其基本原理在例B4.3.2中作过介绍(图D3.3.2),流量公式为式中h为U形差压计中液位差,k为特征常数。图D3.3.23孔板流量计孔板流量计也是一种管道流量计。在管道中插入一定孔径的隔板,如图D3.3.3所示,流体经过孔板时流束收缩,引起板前后压力差。若将压差接入U型差压计,根据差压计液位和孔板尺寸可计算管道流量,关系式与文丘里管一样。孔板流量计已标准化,由于安装方便,在工业管道中应用广泛。缺点是能量损失较大,并引起原流场改变。图D3.3.34转子流量计转子流量计装在流道中,由倒圆锥形管与转子组成,见图D3.3.4所示。当流体自下而上流动时,由于节流作用转子上下产生压差p,对转子产生向上的力,再加上浮力,两个力之和等于转子重量时,转子平衡在锥形管的一定位置上,流量Q与转子位置H存在线性关系Q = H为一系数。在圆锥管上标有刻度,可从转子高度直接读出流管。转子流量计结构简单,读数方便,压力损失小,适用于管道内小流量定常流动测量,适合于实验室使用。图D3.3.4 5涡轮流量计涡轮流量计也装在流道内,流体通过时使涡轮旋转。图D3.3.5在一定流量范围和流体粘度下,涡轮转速与流速成正比。涡轮叶片接近管壁外的检测线圈,因周期性切割磁力线,使线圈内产生与流量成正比的电脉冲信号,由仪表读出。涡轮流量计可显示瞬时流量与累计流量,读数方便。缺点是不能小型化,对流体质量要求较高,低流量时误差较大。图D3.3.5 6电磁流量计电磁流量计应用电磁感应原理测量导电流体的流量。当流体穿过特定磁场时切割磁力线产生诱导电位差,检测感应电压可换算成流体的流速。电磁流量计在探头上装有产生均匀磁场的线圈,若磁场强度为H,磁场中导电流体特征长度(管径)为L,平均流速V与感应电位差E成正比:V = k Ek = k (H,L)是与H、L有关的系数。图D3.3.6电磁流量计最大的优点是可作非接触式测量,探头可环形包围在流场外(如管流),测量穿过探头内部磁场区域的流量。也可作接触式测量,将圆形探头伸入流场中,磁场在探头外部,可测量周围探头半径宽的圆环区域内的速度平均值。电磁流量计对测量脉冲流量具有一定精度和稳定性,已广泛用于医学测量。D3.3.2流速测量工程上用风速碗、水翼流速仪测量风速、水速,在科研上精确的流速测量有测压法、热线法和激光法。1测速 图D3.3.7图D3.3.8测速管是总压管和静压管的复合管,习惯上仍叫皮托管,如图D3.3.7所示。从差压计上读出总压与静压之差值h,即为动压,由动压可计算流速,若被测流体重度为 ,差压计内液体为 ,由皮托管可测量孔端中心线附近的流速。作定常流动测量时读数比较稳定,是流体力学中基本的测速工具。每根皮托管使用前必须用标准皮托管作Vp校准,使用时还必须考虑对流场干扰引起的速度修正。皮托管测速的缺点是对不定常流场不能测瞬时流速,只能测时均值。2热线测速仪热线测速仪是将由两根支架张紧的一根短而细的金属丝(铂丝)置于同来流成直角的方位。图D3.3.8由电流加热铂丝,使温度高于流体温度,当来流流过金属丝时发生热交换使其温度降低,并随着流速变化而变化,测量随温度改变引起的铂丝电阻值变化可换算成流速。早期的热线风速仪用恒流电桥,开始时用单根热线测量空气平均流速;而后用多根热线,可测量瞬时流速、脉冲流速、雷诺应力、关联函数和紊流谱等;再后来又用于测量水和其他流体的流速。还有人将热线改为热膜。热线(热膜)测速仪的金属丝(膜)可做得很小,对流场干扰小,可精确地测量流场内速度分布,能反映低流速及靠近壁面的流速,是目前应用较广的测速方法之一。缺点是热线容易折断。3激光多普勒测速仪图D3.3.9a激光多普勒测速仪是根据多普勒效应,利用检测随流体一起运动的微粒散射光的频率来测定流体速度的。当声源和接收点有相对运动时,接收到的频率将不同于声源发出的频率,称为多普勒频移,频移与相对运动速度有关。当一束某一频率fo (波长为o)之入射激光(单色光)照射到随流体一起运动的微粒 P 时,微粒成为一个散射中心(图D3.3.9b)。由于光源与运动微粒间有相对运动,根据多普勒效应,微粒散射光频率与入射频率产生第一次频移。若用固定的光接收器接收运动微粒散射光频率,由于运动微粒与光接收器有相对运动,接收器接收到的频率fs与运动微粒散射光产生第二次频移。从入射光到接收器接收到的散射光的总频移为fD= fo - fs,称为多普勒频,多普勒频与微粒运动速度V存在比例关系V = k fDK为由测速仪光学系统决定的常数。图D3.3.9b 激光多普勒测速的空间分辨率很高(测点直径可小到10m),动态响应好,精度高,线性好,而且是非接触式测量,不干扰流动,也是一种应用较广的测速方法。使用时要求流体和通道能透光,测量气体时要人工加入微粒,对液体可直接测量。缺点是测到的是微粒速度,微粒速度与流体速度不完全一致,特别在流动脉动速度较大(如紊流)时,必须研究微粒与流体的跟随性规律。4PIV技术PIV是“Particle Image Velocimetry”的缩写,意为粒子图像速度场仪,可用于测量二维平面速度场。其基本原理是用激光电光源照射流场,用高速摄像仪拍摄两个时刻的粒子图像,用计算机处理两幅图像的信息,计算流场瞬态速度场(图D3.3.10)。PIV克服激光测速仪单点局限性,可提供流场丰富的空间结构信息。图D3.3.10D3.4流场显示观察流体流动图像不仅可以加深对流动过程的直观认识,掌握流动特点,帮助建立理论分析模型,而且可以从流动图像中获得信息,检验理论分析结果,发现新的现象。但是大多数流体是透明的,肉眼很难辨认流体微团的运动,因此流场显示技术成了流体力学中重要的研究手段之一。到目前为止流场显示技术已有几十种之多,大致可分为外加物质法、光学法和注入能量法三大类;观察手段有肉眼、普通照相、电视录象、高速摄影、全息照相等。分别简介如下。一外加物质法这种方法主要用于不可压缩流动。向液体或低速流动的气体内加入可见物质如涂料、烟雾、化学试剂、放射性粒子等,当它们与流体微团一起运动时显示出迹线或流线。此法简单易行,便于观察,使用最早,至今仍是应用得最多的方法。缺点是由于外加物质的密度与流体存在差异,在不定常流动及热力学性质变化的流动中带来较大误差,有的要污染流场,根据外加物质的方式和种类可分为:1直接注入示踪法此法对工作流体不限,注入物质有染料、墨水、炼乳、烟线(卫生香)、雾(煤油、干冰、石蜡、四氯化碳等)、气泡(肥皂、氯气、氢气、氧气等)、油滴、固体粒子(铝粉、炭粉、镁粉、玻璃粉等)、放射性粒子等。其中,氢气泡法是将水电解成氢气和氧气,让氢气在流场中形成小气泡与水一起流动,气泡的生成由电子线路控制,气泡的运动由摄影记录下来(图D3.4.1),不污染流体,是显示流动速度剖面较为先进的方法之一,可用于研究边界层、不定常流、湍流、旋涡、射流、绕流、尾流等,缺点是氢气泡有浮力效应,需要估计引起的误差。放射性同位素粒子示踪法可直接显示生物体内的流动,用于生物医学中的活体研究。 图D3.4.12化学反应示踪法 工作流体是某些化学染料液,用电解法或注入其它化学试剂使流体发生局部化学反应,产生颜色变化,显示流场。常用的化学染料液有酚兰染料,在酸性环境中它呈桔黄色,在碱性环境中呈兰色。电解时阴极附近呈碱性;还有热敏或光敏化学染料,在热和光的作用下分解为带有颜色的物质。这种方法因无浮力效应适用于显示有密度差的流动、分层流动、旋转流动、脉动管流等,缺点是染流扩散会引起观察误差。3壁面示踪法在物体表面涂上某种物质,当流体流过物面时,由于应力、压力、温度分布不同,在涂层上显示出物体附近的流动图案。常用的有油膜、药膜、升华膜(樟脑)、感温膜(热敏漆、液晶)、电解腐蚀膜等。这种方法适用于观察定常的物面流、边界层流动等。缺点是对原边界层流动有一定干扰。4丝线法将短丝线一端贴在物体表面,另一端自由飘浮在流场中,可观察物面流、边界层流动、分离流、尾流、旋涡等。近年来发展的荧光线,在紫外光照射下可发生荧光,便于拍照。二光学法光学法主要用于可压缩流体,由于可压缩流体微团的光学折射率是密度的函数,在流动中穿透流场的光线受到流体密度场干扰引起光学扰动,在屏幕上显示出流场变化。光学法的最大优点是非接触式显示,并可作定量测量,缺点是仪器价格较昂贵。1阴影法阴影法是光学显示中最简单的一种,将一束光(散射或平行光)透过流动试验区投射到屏幕上(或通过透镜)(图D3.4.2),若试验区内气流未受扰动,密度均匀,屏幕上亮度均匀,若气流受扰动,由于密度变化引起光线偏折,投射到屏幕后偏离原来位置,将出现暗纹,一般能定性观察击波、边界层、尾流、旋涡等。 图D3.4.22纹影法 纹影法与阴影法的区别在于增加了一个“刀口”,如图D3.4.3所示。让透过试验段的投射光在刀口处成像,通过另一透镜再投射到屏幕上,密度大的区域由于偏折大被刀口挡住,在屏幕上出现暗纹,密度小的区域由于偏折小未被挡住,在屏幕上出现亮纹。密度的不均匀造成屏幕上亮暗不均匀的纹影,测量纹影的尺寸可计

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论