已阅读5页,还剩26页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
勾股定理 如果直角三角形两直角边分别为a b 斜边为c 那么 即直角三角形两直角边的平方和等于斜边的平方 1 在直角三角形ABC中 两条直角边a b分别等于6和8 则斜边c等于 2 直角三角形一直角边为9cm 斜边为15cm 则这个直角三角形的面积为 cm2 3 一个等腰三角形的腰长为20cm 底边长为24cm 则底边上的高为 cm 面积为 cm2 10 54 16 192 1 在一次台风的袭击中 小明家房前的一棵大树在离地面6米处断裂 树的顶部落在离树根底部8米处 你能告诉小明这棵树折断之前有多高吗 一辆装满货物的卡车 其外形高2 5米 宽1 6米 要开进厂门形状如图的某工厂 问这辆卡车能否通过该工厂的厂门 说明理由 问题二 O C D H 实际问题 数学问题 实物图形 几何图形 O C D H 2米 2 3米 由图可知 CH DH CDOD 0 8米 OC 1米 CD AB 于是车能否通过这个问题就转化到直角 ODC中CD这条边上 探究 不能 能 由于厂门宽度足够 所以卡车能否通过 只要看当卡车位于厂门正中间时其高度与CH值的大小比较 当车的高度 CH时 则车通过当车的高度 CH时 则车通过 1 6米 根据勾股定理得 CD 0 6 米 2 3 0 6 2 9 2 5 卡车能通过 CH的值是多少 如何计算呢 如图 将长为10米的梯子AC斜靠在墙上 BC长为6米 A B C 10 6 1 求梯子上端A到墙的底端B的距离AB 2 若梯子下部C向后移动2米到C1点 那么梯子上部A向下移动了多少米 A1 C1 2 3 巩固提高之灵活运用 10 如图 把长方形纸片ABCD折叠 使顶点A与顶点C重合在一起 EF为折痕 若AB 9 BC 3 试求以折痕EF为边长的正方形面积 解 由已知AF FC 设AF x 则FB 9 x 在Rt ABC中 根据勾股定理FC2 FB2 BC2 则有x2 9 x 2 32 解得x 5 同理可得DE 4 GF 1 以EF为边的正方形的面积 EG2 GF2 32 12 10 一位工人叔叔要装修家 需要一块长3m 宽2 1m的薄木板 已知他家门框的尺寸如图所示 那么这块薄木板能否从门框内通过 为什么 1m 2m 门框的尺寸 薄木板的尺寸如图所示 薄木板能否从门框内通过 2 236 2 1米 3米 一个门框的尺寸如图所示 一块长3m 宽2 1m的薄木板能否从门框内通过 为什么 1m 2m A D C B 解 联结AC 在Rt ABC中AB 2m BC 1m B 90 根据勾股定理 2 1m 薄木板能从门框内通过 1 如图 公园内有一块长方形花圃 有极少数人为了避开拐角走 捷径 在花圃内走出了一条 路 他们仅仅少走了步路 假设3步为1米 却踩伤了花草 超越自我 3m 4m 路 小强想知道学校旗杆的高 他发现旗杆顶端的绳子垂到地面还多1米 当他把绳子的下端拉开5米后 发现下端刚好接触地面 你能帮他算出来吗 5米 X 1 米 x米 解设AC的长为X米 则AB x 1 米 过关斩将 一种盛饮料的圆柱形杯 如图 测得内部底面半径为2 5 高为12 吸管放进杯里 杯口外面至少要露出4 6 问吸管要做多长 A B C 12cm R 2 5cm 12cm 试一试 在我国古代数学著作 九章算术 中记载了一道有趣的问题 这个问题的意思是 有一个水池 水面是一个边长为10尺的正方形 在水池的中央有一根新生的芦苇 它高出水面1尺 如果把这根芦苇垂直拉向岸边 它的顶端恰好到达岸边的水面 请问这个水池的深度和这根芦苇的长度各是多少 D A B C 实际问题 例如图所示 有一个高为12cm 底面半径为3cm的圆柱 在圆柱下底面的A点有一只蚂蚁 它想吃到圆柱上底面上与A点相对的B点处的食物 问这只蚂蚁沿着侧面需要爬行的最短路程为多少厘米 的值取3 拓展1如果圆柱换成如图的棱长为10cm的正方体盒子 蚂蚁沿着表面需要爬行的最短路程又是多少呢 拓展2如果盒子换成如图长为3cm 宽为2cm 高为1cm的长方体 蚂蚁沿着表面需要爬行的最短路程又是多少呢 分析 蚂蚁由A爬到B过程中较短的路线有多少种情况 1 经过前面和上底面 2 经过前面和右面 3 经过左面和上底面 1 当蚂蚁经过前面和上底面时 如图 最短路程为 解 AB 2 当蚂蚁经过前面和右面时 如图 最短路程为 AB 3 当蚂蚁经过左面和上底面时 如图 最短路程为 AB 2 如图 是一个三级台阶 它的每一级的长 宽 高分别为2m 0 3m 0 2m A和B是台阶上两个相对的顶点 A点有一只蚂蚁 想到B点去吃可口的食物 问蚂蚁沿着台阶爬行到B点的最短路程是多少 2m 0 2 3 0 3 3 m 选作 1 如图 长方形中AC 3 CD 5 DF 6 求蚂蚁沿表面从A爬到F的最短距离 已知 如图 在 ABC中 ACB 90 AB 5cm BC 3cm CD AB于D 求CD的长 已知 如图 在中 是边上的中线 于 求证 如图在锐角 ABC中 高AD 12 AC 13 BC 14求AB的长 例5 台风是一种自然灾害 它以台风中心为圆心在周围数十千米范围内形成气旋风暴 有极强的破坏力 如图 据气象观测 距沿海某城市A的正南方向220千米B处有一台风中心 其中心最大风力为12级 每远离台风中心20千米 风力就会减弱一级 该台风中心现正以15千米 时的速度沿北
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 室内设计原理及家居装修技巧
- 地理知识要点速查手册
- 代谢性骨病免疫治疗的个体化方案
- 客服部客户服务流程优化与效率提升方案
- VR技术在胸外科手术培训中的标准化培训方案制定
- 常州工业岗位行业通-用面试技巧分享
- TAVR术后社会回归支持策略
- SMA患儿干细胞治疗的个体化方案设计
- 护士面试技巧与英语沟通实-用指南
- 如何准备银行内部管理岗位面试提高综合能力和求职策略
- 装修公司施工制度总则参考
- 初中英语比较级和最高级专项练习题含答案
- 水文比拟法估算年径流量举例 (1)讲解
- 商务宴请的点菜技巧课件
- 软件开发chapter3(软件分析与设计CASE工具)
- 低压柜试验报告
- 单招协议培训
- 扑克牌搭高塔 课件(16张PPT) 小学班会活动
- 2023学年完整公开课版插座安装
- 医疗机构麻醉药品和精神药品的使用管理
- GB/T 3672.1-2002橡胶制品的公差第1部分:尺寸公差
评论
0/150
提交评论