飞轮.dwg
飞轮.dwg

复摆颚式破碎机(250*400)设计【11张CAD图纸+WORD毕业论文】【农业机械资料】

收藏

压缩包内文档预览:
预览图
编号:402068    类型:共享资源    大小:1.91MB    格式:RAR    上传时间:2015-01-28 上传人:好资料QQ****51605 IP属地:江苏
45
积分
关 键 词:
复摆 颚式破碎机 设计 全套 cad 图纸 word 毕业论文 农业机械 资料
资源描述:

【温馨提示】 购买原稿文件请充值后自助下载。

[全部文件] 那张截图中的文件为本资料所有内容,下载后即可获得。


预览截图请勿抄袭,原稿文件完整清晰,无水印,可编辑。

有疑问可以咨询QQ:414951605或1304139763

摘要
目前国内使用的破碎机类型很多,主要有鄂式破碎机、锤式破碎机、圆锥破碎机、反击式破碎机和辊式破碎机。复摆式颚式破碎机与简摆式相比较,其优点是:质量较轻,构件较少,结构更紧凑,破碎腔内充满程度较好,所装物料块受到均匀破碎,加以动颚下端强制性推出成品卸料,故生产率较高,比同规格的简摆颚式破碎机的生产率高出20-30%;物料块在动颚下部有较大的上下翻滚运动,容易呈立方体的形状卸出,减少了像简摆式产品中那样的片状成分,产品质量较好。
本设计需求参数为进料口尺寸:250×400mm;最大进料粒度:210mm;处理能力:3-13m3/h;偏心轴转速:300r/min;排料口调整范围:20-60mm;电动机功率:11-15KW。设计分析了破碎机的发展现状和研究颚式破碎机的意义及复摆颚式破碎机机构尺寸对破碎性能的影响,计算确定了PE250×400的机构参数,设计内容主要包括复摆颚式破碎机的动颚、偏心轴、皮带轮、动颚齿板、定颚齿板、机架等一些重要部件;另外,对颚式破碎机的工作原理及特点和主要部件的作用作了介绍,包括保险装置、调整装置、机架结构、润滑装置等;同时对机器的参数(主轴转速、生产能力、破碎力、功率等)作了计算。此外,对破碎的意义、破碎工艺和破碎比的计算,颚式破碎机的主要部件的安装、操作及维修作了简单介绍。
关键词:复摆颚式破碎机  带传动  飞轮  磨损  

 

ABSTRACT
Currently ,the type of the crusher is multitudinous in domestic, mainly including jaw crusher, hammer crusher, cone crusher, impact breaker and roll crusher. Compared with fine impact crusher ,SBM(swinging jaw break machine)´s advantage is: quality is lighter, less compact structure component, broken lumen filled with degree is good, with materials by uniform broken, to block bottom mandatory move jaw is unloading, launch finished higher, than with specifications productivity of fine impact crusher 20-30% higher than the productivity; Material blocks in the lower have bigger jaws move up and down movement, a cube tumbling to the shape of, reducing the discharged as Jane tilting products that flake composition, product quality is better.
This design is done for:the feeding port size is 250×400mm; Maximum feeding granularity is 210mm; Production efficiency is 3-13m3/h; Eccentric shaft speed is 300r/min; Discharging mouth adjustment range 20mm to 60mm; Motor power is 11-15KW. This design analysis of the current development of the crushier,the meanings of researching the crusher,how the dimensions of jaw crusher effect on the performance of the broken, calculate and determine the PE250 x 400 structure parameters, the design content mainly includes swing jaw, eccentric shaft, pulley, seing jaw gear plate, and settled jaw gear plate and frame and some other important components; In addition, jaw crusher principle and characteristics and main component function is introduced, including insurance device, adjusting devices and frame structure, lubrication device, etc.; Also on the machine parameters (spindle speed, production capacity, crushing strength, power) calculate as well. In addition, the significance of broken, crushing process and calculation of crushing ratio, jaw crusher main component installation, operation and maintenance are introduced.
KEY WORDS:Jaw crusher   Belt drive   Flywheel   Wear



目录
第1章 绪论··················································································1
1.1引言·························································································1
1.2复摆颚式破碎机的特点 ··································································3
1.3国内外颚式破碎机的发展及现状·························································5
第2章 总体设计············································································8
2.1复摆鄂式破碎机的基本结构····························································· 8
2.2复摆鄂式破碎机的工作原理·····························································10
第3章 主要参数的确定··································································12
3.1已知参数··················································································12
3.2部分结构参数的确定·····································································12
3.3动鄂的摆动次数···········································································14
3.4电动机的选择·············································································15
3.5四连杆机构各杆长度的确定·····························································16
3.6最大破碎力················································································17
3.7各部件受力分析···········································································17
第4章 传动装置的设计··································································20
4.1带轮的设计················································································20
4.2偏心轴的设计·············································································25
4.3飞轮的设计················································································27
4.4轴承的选择与校核········································································29
4.5轴承座的设计·············································································31
4.6配重的选择················································································32
4.7外形尺寸的设计···········································································33
第5章 各基本构件的设计······························································35
5.1动鄂的设计···············································································35
5.2齿板的设计················································································38
5.3推力板的设计·············································································40
5.4调整装置的设计···········································································41
5.5破碎腔型的形状···········································································43
5.6机架的设计···············································································44
第6章 复摆鄂式破碎机的安装························································47
6.1破碎机的安装·············································································47
6.2机架的安装···············································································47
6.3偏心轴和机架的安装·····································································48
6.4肘板的安装···············································································48
6.5动鄂的安装···············································································49
6.6齿板的安装···············································································49
第7章 颚式破碎机的磨损······························································50
7.1齿板的磨损分析··········································································50
7.2颚板磨损机制·············································································51
7.3颚板材质的选择··········································································52
第8章 破碎机出口扬尘的解决和噪声防治·········································54
8.1破碎机出口扬尘的解决··································································54
8.2破碎机的噪声危害及防治途径···························································55
第9章 颚式破碎机的使用·····························································56
9.1颚式破碎机的操作········································································56
9.2颚式破碎机的维护与保养·······························································57
总结···························································································59
鸣谢···························································································60参考文献·····················································································61


内容简介:
Suhas A.Rewatkar, Dr.A.V.Vanalkar, P.G. Mehar / International Journal of Engineering Research and Applications (IJERA) ISSN: 2248-9622 Vol. 3, Issue 1, January -February 2013, pp.008-012 8 | P a g e Stress Analysis Of Lpg Cylinder Using Ansys Software Suhas A.Rewatkar,1Dr.A.V.Vanalkar,2 P.G. Mehar3 *Student M Tech. K.D.K.C.E., NAGPUR, 440009 *Assistant Professor, K.D.K.C.E., NAGPUR, 440009 *Assistant Professor, K.D.K.C.E., NAGPUR, 440009 ABSTRACT: Analysis of the robot hand was analyzed using dedicated software for FEM analysis. The model was exported to FEM processor i.e. in ANSYS, the geometry was updated and the structure meshed using 3D elements. Finite element analysis is a method to computationally model reality in a mathematical form to better understand a highly complex problem. In the real world, everything that occurs results from the interaction between atoms (and sub-particles of those atoms). Billions and billions and billions of them. If we were to simulate the world in a computer, we would have to simulate this interaction based on the simple laws of physics. However, no computer can process the near infinite number of atoms in objects, so instead we model finite groups of them. Keywords: robot hand, Robotics, Robot Finger, Finger joints, FEA modeling. INTRODUCTION One may define it as a numerical method for solving engineering problem and physics, or a method to computationally model reality in a mathematical form; either one is acceptable indeed. However, for more complete definition of FEM, it may define as. “A continuum is discredited into simple geometric shapes called finite elements; constitutive relations, loading and constraints are defined over these elements; assembly of elements results set of equations; solution of these equations gives the approximate behavior of the continuum.” FIG(1) FIG(2) Hebei University of Architecture (12) - 2014/2/17 DownloadSuhas A.Rewatkar, Dr.A.V.Vanalkar, P.G. Mehar / International Journal of Engineering Research and Applications (IJERA) ISSN: 2248-9622 Vol. 3, Issue 1, January -February 2013, pp.008-012 9 | P a g e 7.3 MATERIAL PROPERTIES OF STRUCTURAL STEEL Properties of Structural steel are Modulus of elasticity in tension and compression, E = 200 X 103 Mpa Modulus of elasticity in shear, G = 80 X 103 Mpa Ultimate tensile Strength, Sut = 435 Mpa Yield strength in tension & compression, Syt / Syc = 246 Mpa Yield strength in Shear, Sys = 154 Mpa Percentage elongation, e = 30 % Specific gravity = 7.8 Possions Ratio, = 0.292 Endurance limit in reversed bending, Seb = 183 Mpa ANSYS PROCEDURE FOR F.E. ANALYSIS o Model o Geometry- Imported from PROE in “.iges” format 1. Solid- generated ansys geometry. o Mesh- tetrahedral element selection o Supply model parameters o Material properties and determine the constraints. o Display of results. LOADS AND INPUT DATA Analysis of the robot hand has been done to check the overall deformation required to robot fingers to grip an object. Object is kept exactly over the robot palm at the center of hand. Object is spherical shape of 80mm diameter. (Fig 3).maximum deformation takes place for thumb joint of 124.25mm while it very for remaining four fingers. Maximum 700angle required for base joint of the thumb. Torque required at base joint of all fingers including thumb, is found different. FIG (3) Maximum torque is at thumb joint of 1.5 N-mm because of its self weight while torque at remaining four fingers very form 0.45N-mm to 0.6N-mm as per its respective deformation. (fig 3) For the input data and loading scheme, the gravitational and inertial forces were introduced in the current model with the maximum values required by the application. The palm of robot hand is fixed. A normal temperature distribution of 22 C was considered and it was assumed that no other conditions influence the environment. Hebei University of Architecture (12) - 2014/2/17 DownloadSuhas A.Rewatkar, Dr.A.V.Vanalkar, P.G. Mehar / International Journal of Engineering Research and Applications (IJERA) ISSN: 2248-9622 Vol. 3, Issue 1, January -February 2013, pp.008-012 10 | P a g e FIG(4) STATIC STRUCTURAL ANALYSIS OF ROBOT HAND The static analysis comprises an assessment of the total deformation, equivalent (von Misses) stress under the loads mentioned above, max shear stress and the fatigue tool i.e. for life and damage and safety factor. An analysis of non operational robot was done only considering the gravitational forces. The inertial forces were introduced as well, to show a complete static analysis of the operational robot. DISTRIBUTION OF STRESSES ALONG THE FINGER TIPS ALONG THE THREE AXES FIG (5) Hebei University of Architecture (12) - 2014/2/17 DownloadSuhas A.Rewatkar, Dr.A.V.Vanalkar, P.G. Mehar / International Journal of Engineering Research and Applications (IJERA) ISSN: 2248-9622 Vol. 3, Issue 1, January -February 2013, pp.008-012 11 | P a g e VON-MISES STRESS DISTRIBUTION A material is said to start yielding when its von Misses stress reaches a critical value known as the yield strength,. The von Misses stress is used to predict yielding of materials under any loading condition from results of simple uniaxial tensile tests. FIG(6) Object Name Joint Probe State Solved Definition Type Joint Probe Boundary Condition Revolute - Solid To Solid Orientation Method Joint Reference System Orientation Reference Coordinate System Options Result Type Force Result Selection All Display All Time Points Maximum Value Over Time X Axis 8.375e-003 N Y Axis 2.6212e-002 N Z Axis 3.4694e-018 N Total 4.7247e-002 N Minimum Value Over Time X Axis -4.376e-002 N Y Axis 0. N Z Axis -1.7347e-018 N Total 0. N Hebei University of Architecture (12) - 2014/2/17 DownloadSuhas A.Rewatkar, Dr.A.V.Vanalkar, P.G. Mehar / International Journal of Engineering Research and Applications (IJERA) ISSN: 2248-9622 Vol. 3, Issue 1, January -February 2013, pp.008-012 12 | P a g e CONCLUSION modeling & structural analysis of five fingered robot hand is carried out. The modeling is carried by using the Pro E software. The volume of each link of finger is kept approximately 1214.8 mm. The CAD model of robot hand in Pro E is imported in the ansys software for the analysis. The coarse mesh is generated for the whole assembly. TORQUE ACTING thumb -1.5 n mm while torque at remaining four fingers very form 0.45N-mm to 0.6N-mm as per its respective deformation. Overall movement at thumb of 124.25mm VON-MISES STRESS DISTRIBUTION 0.89649 mpa REFERENCES 1. Ikuo Yamano, Takashi Maeno “ Five Fingered Robotic hand Using Ultrasonic Motors and Elastic Elements” Department of Mechanical Engineering, Kieo University Hiyoshi Yokohama 223-8522, Japan. Proceedings of the 2005 IEEE International Conference on Robotics and Automation Barcelona, Spain, April 2005. 2. Dongwoon Choi, Woonghee Shon and Ho-Gil Lee “Design of 5 D.O.F Robot Hand with an artificial skin For An Android Robot” Department of Applied Robot Technology, Korea Institute of Industrial Technology Republic of Korea. Pg.No.85 3. Zhe Xu, Emanual Todorov, Brian Dellon and Yoky Matsuoka “ Design and Analysis of an artificial finger Joint for anthromorphic Robotic hands” Department of computer science & Engineering, University of Washington, WA 98195 USA. 4. Gabriel Gmez , Alejandro Hernandez and Peter Eggenberger Hotz “An adaptive neural controller for a tendon Driven Robotic Hand” Artificial Intelligence Laboratory Department of Informatics, University of Zurich, Switzerland.Pg.No.2-6. 5. Domenico Prattichizzo, and Antonio Bicchi,“Dynamic “Analysis of Mobility and Graspability of General Manipulation Systems” IEEE transactions on robotics and automation, vol. 14, no. 2, april 1998. 6. Shigematsu, T.; Kurosawa, M.K.; Asai, K. (April 2003), Nanometer stepping drives of surface acoustic wave motor, IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control, 50, IEEE, pp. 376385 Society of Robot Website, 7. /wiki/Robotics“Chp1 - The Planer Serial Robot hand. Hebei University of Architecture (12) - 2014/2/17 Download液化石油气钢瓶使用ANSYS软件的应力分析摘要:机械手的分析通常会使用专用软件进行有限元分析。这个模型被输出到有限元处理器即ANSYS中,几何进行了更新,结构网络的划分使用了3D元素。有限元分析是一种用数值形式计算模型真实性的方法,它能更好地理解一个非常复杂的问题。在现实世界中,所有发生的一切都是数以几十亿的原子(以及这些原子中的粒子)间相互作用的结果。如果我们要将这模拟在计算机世界中,我们将基于一个简单的物理学定律来模拟这种相互作用,然而,没有计算机可以处理物体中无限多的原子,所以,我们建立了“有限”的模型来代替它们。关键词:机械手,机器人,机器人手指。引言:人们可以把它定义为用数值来解决工程或物理问题的方法,也可以定义为一个用数学形式来计算模型真实性的方法,任何一种说法都是可以确实被接受的。然而,对于有限元法更为完整的定义,它可以定义为:“一个连续被划分成简单的几何形状为有限元;本构关系、载荷和约束都有定义在这些元素中;元素组成了方程组的解;这些方程的解给出了连续近似的特性。”7.3钢结构的材料特性拉伸和压缩弹性模量, E = 200 X 103 Mpa剪切弹性模量, G = 80 X 103 Mpa极限拉伸强度,Sut = 435 Mpa在拉伸和压缩屈服强度,SYT /sycSyc = 246 Mpa Yield strength in Shear, Sys = 154 Mpa 在剪切的屈服强度,系统= 154MpaPercentage elongation, e = 30 %伸长率,E = 30%Specific gravity = 7.8比重= 7.8Possions Ratio, = 0.292承诺比,= 0.29Endurance limit in reversed bending, Seb = 183 在反向弯曲疲劳极限 SEB = 183MpaMPa ANSYS程序有限元分析o 模型o 出现进口几何IGES格式。o阿网格的四面体单元的选择oo Supply model parameters供应模型参数o Material properties and determine the O材料性能和确定o显示结果载荷和输入数据机械手的分析已经完成,检查所需的机器人手指的抓地力的整体变形的object.Object保持刚好在机器人手掌在手的中心。对象是口径80mm的球形。 (图3 ) 。最大变形发生的124.25毫米的拇指关节,同时它非常的其余四指。所需拇指基地联合最大700angle 。在所有的手指包括拇指关节基地所需的转矩,发现不同。最大扭矩是由于其自身重量在1.5 N-毫米拇指关节扭矩而在其余四指非常形成0.45N - mm至0.6N毫米按照其相应的变形。 (图3)对于输入数据和加载方案,引力和惯性力在当前模型中引入了应用程序所需的最大VAL的UE。机器人的手掌是固定的。 22 的正常温度分布被认为它是假定没有其他条件影响实验环境。机械手的结构静力分析静态分析包括总变形量的评估,以上提到的载荷作用下的等效应力、最大剪切应力和疲劳值即寿命、损伤和安全系数。一个无需操作的机械手分析的完成只需要考虑它的重力情况,而要展示一个操作机械手完整的静态结构分析,它的惯力也需要提到。手指沿三个轴的应力分布von-mises应力分布对象名称Joint Probe状态Definition已解决定义边界条件类型转动-固定定位方式联合参考咨询系统定位参考坐标系选项结果类型力结果选择显示全部所有时间点随着时间变化,最大值X轴8.375e-003 ny.轴2.6212e-002 nZ轴3.4694e-018 n总计4.7247e-002 N随着时间变化,最小值X轴 -4.376e-002 NY轴0. NZ轴-1.7347e-018 N总计 0. Ntests材料开始屈服时说,没有应力达到一个临界值称为yield strength屈服强度。Sy.冯氏应力是用来预测易变形的材料在任何加载条件下简单的单轴拉伸试验的结果。结论五指机械手的建模和结构分析工作已经展开。建模是通过使用Pro-E软件开展的,手指的每一个环节的的体积保持约1214.8立方毫米,在Pro-E软件中机械手的CAD模型是输入ANSYS软件中进行分析的,粗网格用于生成整个组件。参考书籍1. Ikuo Yamano, Takashi Maeno五指机器人手用超声波马达和弹性元件部”机械工程,kieo横滨223-8522日本大学。2005四月西班牙巴塞罗那的IEEE机器人与自动化国际会议.2.Dongwoon Choi, Woonghee Shon 和Ho-Gil Lee的5自由度机器人的设计用于人工皮肤的手 Android机器人”部门的应用机器人韩国工业技术研究所pg.no.853. Zhe Xu, Emanual Todorov, Brian Dellon 和 Yoky Matsuoka Analysis of an artificial finger Joint for 对人工指关节的分析anthromorphic的机器人的手的设计” 华盛顿大学计算机科学系工程,WA 98195美国4. Gabriel Gmez , Alejandro Hernandez 和 Peter Eggenberger HotzAn adaptive 一种自适应的对于一个腱驱动控制器人工智能机器人的手” 苏黎世大学实验室信息学系switzerland.pg.no.2-6。5. Domenico Prattichizzo, 和 Antonio Bicchi流动性的动态分析和一般操作graspability系统IEEE机器人与自动化第14卷. 1998四月二号.6. Shigematsu, T.; Kurosawa, M.K.; Asai, K.(2003年4月)纳米步进驱动器表面声波电动机,IEEE交易的超声波,铁电体和频率控制,50,IEEE376页385社会机器人网站 :7. 平面串联机器人的手:/wiki/Robotics anthromorphic Robotic hands” Department of computer science & Engineering, University of Washington, WA 98195 USA河北建筑工程学院毕业实习报告系 别 机械工程学院 专 业 机械设计制造及其自动化 班 级 机101班 姓 名 杨晨晖 学 号 39 指导教师 肖溪 马轶群 实习成绩 毕业实习报告实习是大学生活的第二课堂,是知识更新和发展的源泉,是检验真理的试金石,也是培养提高大学生实践能力的有效途径。一个人的知识和能力只有在实践中才能发挥作用,才能得到丰富、完善和发展。大学生成长,就要勤于实践,将所学的理论知识与实践相结合,在实践中学习,总结,完善自己各方面的能力,从而为自己以后创新打下坚实的基础。在本次实习中我学到了许多对我以后工作很有用的专业知识,并且能熟练的应用。下面就我这次实习做如下报告。1. 实习单位实习单位是河北万矿机械厂,河北万矿机械厂(原名河北省万全县矿山机械厂)系河北省最早定点生产矿山破碎设备的专业厂家,生产规模及产品品种量在省内居领先地位,并被中国市场监测中心评为“中国矿山机械工业50强企业”之一。企业通过了ISO9001质量管理体系认证,产品质量经国家破碎机检测中心检测,在国内居于前列。其产品用于矿山、冶金、化工、建材、建筑及铁路、公路修筑等行业和部门破碎各种矿石和岩石。 其产品行销全国各地,并有部分产品出口国外,被省工商局评为河北省著名商标企业。其厂坚持以用户需求为导向,采用先进技术,持续开发新产品,发展系列化产品,完善配套产品。其厂产品有颚式、细碎颚式、反击式、锤式、立轴反击式、立轴锤式、弹簧圆锥式、液压圆锥式、冲击式、辊式等十个系列四十余种规格破碎机,并有提升、给料、筛分、输送、洗砂、选矿等配套设备,可满足任何规模用户破碎任何矿石、岩石的需求。其厂在供货的同时,可为用户提供造型咨询、配套设计、地基设计、帮助安装调试、技术指导和培训设备维修等全程、全方位服务。二. 实习目的此次毕业实习的目的是以机械设计及其自动化专业的培养目标为前提,组织学生参观相关的机械企业或部门,培养学生重视实践、增强理论联系实际的观念,深入调查研究、拓宽视野、增强面向人才市场、服务于社会的观念。通过实习,我们要了解所需设计机型机器的生产情况,弄清设计过程,学会设计前整理和收集资料;在实习过程中要结合实物,认真研究图纸,弄清各部分关系;仔细观察某些具体部件(如工装)的加工工艺及其某些工序(如组装)的基本过程;并注意比较不同机型装载机在结构及其布置上的异同;认真收集资料,为下一步的毕业设计做好准备工作。三实习内容2014年4月16日上午我们设计小组成员在肖老师和马老师的带领下来到了坐落于张家口西山产业聚集区的河北万矿机械厂,万矿与我校属于校企合作关系,是我机械工程学院的实习基地之一。在这里,我们看到了许多的矿山机械,例如破碎机、振动筛。破碎机又分为好多种,我们看到的有颚式破碎机、立轴式破碎机、反击式破碎机和弹簧圆锥破碎机等。这次实习使我获得了一次将所学知识运用到实际生产的机会,在实习过程中,许多原来并不熟练的知识逐渐被清晰的理解,许多原来没有重视的方面也得到了巩固,更在发现及解决问题的过程中学习到不少课本上没有的知识。 在这里,我主要介绍矿山最常用的一种机械破碎机。破碎机又分为好多种,这里仅介绍我们看到的其中几种,如颚式破碎机、反击式破碎机和弹簧圆锥破碎机。首先是颚式破碎机。此次实习我们所看到的颚式破碎机都是PE、PEX系列的复摆颚式破碎机。复摆鄂式破碎机主要由机架、颚板和侧护板、传动件、调节装置、飞轮、润滑装置等部分组成。机架是上下开口的四壁刚性框架,用作支撑偏心轴并承受破碎物料的反作用力,要求有足够的强度和刚度,一般用铸钢整体铸造,小型机也可用优质铸铁代替铸钢。大型机的机架需分段铸成,再用螺栓牢固链接成整体,铸造工艺复杂。自制小型颚式破碎机的机架也可用厚钢板焊接而成,但刚度较差。定颚和动颚都由颚床和颚板组成,颚板是工作不分,用螺栓和楔铁固定在颚床上。定颚的颚床就是机架前壁,动颚颚床悬挂在周上,要有足够的强度和刚度,以承受破碎反力,因而大多是铸钢或铸铁件。偏心轴是破碎机的主轴,受有巨大的弯扭力,采用高碳钢制造。偏心部分须精加工、热处理、轴承衬瓦用巴氏合金浇注。偏心轴一端装带轮,另一端装飞轮。调节装置有楔块式,垫板式和液压式等,一般采用楔块式,由前后两块楔块组成,前楔块可前后移动,顶住后推板;后楔块为调节楔,可上下移动,两楔块的斜面倒向贴合,由螺杆使后楔块上下移动而调节出料口大小。小型颚式破碎机的出料口调节是利用增减后推力板支座与机架之间的垫片多少来实现。颚式破碎机的飞轮用以存储动颚空行程时的能量,再用于工业形成,使机械的工作符合趋于均匀。带轮也起着飞轮的作用。飞轮常以铸铁或铸钢制造,小型机的飞轮常制成整体式。飞轮制造,安装时要注意静平衡。偏心轴轴承通常采用集中循环润滑。心轴和推力板的支撑面一般采用润滑脂通过手动油枪给油。动颚的摆角很小,使心轴与轴瓦之间润滑困难,常在轴瓦底部开若干轴向油沟,中间开一环向油槽使之连通,再用油泵强制注入干黄油进行润滑。它们适用于冶金、矿山、建筑、交通、水泥等部门,作为粗碎、中碎抗压强度在300Mpa以下的各种矿石或岩石之用。具有结构简单合理、产量高、破碎比大、齿板寿命长、成品粒度均匀、动力消耗低、维修保养方便等优点,是目前国内最先进的机型。 该系列破碎机破碎方式为曲动挤压型,其工作原理是:电动机驱动皮带和皮带轮,通过偏心轴使动颚上下运动,当动颚上升时肘板与动颚间夹角变大,从而推动动颚板向固定颚板接近,与此同时物料被压碎或劈碎,达到破碎的目的;当动颚下行时,肘板与动颚间夹角变小,动颚板在拉杆、弹簧的作用下,离开固定颚板,此时已破碎物料从破碎腔下口排出。随着电动机连续转动而破碎机动颚作周期性地压碎和排泄物料,实现批量生产。其次是反击式破碎机。反击式破碎机能处理边长100500毫米以下物料,其抗压强度最高可达350兆帕,具有破碎比大,破碎后物料呈立方体颗粒等优点。反击式破碎机,适用于破碎中硬物料,如水泥厂的石灰石破碎,具有生产能力大,出料粒度小的优点。反击式破碎机的工作原理:利用冲击能来破碎物料的破碎机械,当物料进入板锤作用区时,受到板锤的高速冲击时被破碎物不断被抛到安装在转子上方的反击装置上破碎,然后又从反衬板上弹回到板锤作用区重新被反击,物料由大到小进入一、二、三、反击腔重复进行破碎。直到物料被破碎至所需粒度,由机器下部排出为止。调整反击架与转子架之间的间隙可达到改变物料形状的目的。最后是弹簧圆锥破碎机。弹簧圆锥式破碎机主要由破碎部分、传动机构、调整装置、保险装置、润滑装置等组成。适应于冶金、建材、化工、水电、筑路等行业。对各种硬度的矿石和演示的中碎和细碎;具有生产能力高、单位电耗低、工作平稳、出料粒形针片少等特点。弹簧圆锥式破碎机的工作原理:它的破碎机构由两个截头圆锥体及动锥和定锥组成。使物料在动锥和定锥间形成的破碎腔中被破碎。动、定锥上都设有耐磨衬套,动锥装在主轴上定锥装在机架上,定锥和主轴由球形滑动轴承支撑并悬挂于机架上,主轴下端安装在锥形衬套和偏心套内,并通过传动装置能在机架中旋转。由于偏心轴套的作用,旋转时,动锥同时旋转并摆动,因此,破碎腔内的石料受周期间歇挤压等破碎力的作用而破碎。4 实习结果弹簧圆锥式破碎机有破碎率较大的优点很适合较大固定的工作场地,而复摆颚式破碎机具有质量轻、结构紧凑、构件少等优点,工作场地很灵活,同时比简摆颚式破碎机生产效率高破碎均匀,加以动鄂下端强制性推出成品卸料,故生产率较高。颚式破碎机主机突然停机(俗称:闷车)的排除方法:1) 清除排料口堵塞物,确保出料畅通;2) 调紧或更换三角皮带;3) 重新安装或更换紧定衬套;4) 调正工作场地的电压,使之符合主机工作电压的要求;5) 更换轴承。一般情况下影响颚式破碎机工作的主要因素有啮角与转数。啮角就是动鄂与定鄂之间的夹角。根据计算最大啮角可达32度。而实际使用中都小于 25度,一般为1820度左右。啮角太大,会使破碎腔中的矿石向上挤出,以致伤人或损坏其他设备,同时随着啮角增大(破碎比加大)生产率下降。调节排矿口的大小,也就改变啮角的大小。在实际生活中,根据排矿粒度的要求来调节排矿口的大小。因此,在保证产品粒度的要求下,尽量把排矿口放大是合理的。排矿口大小可以通过调节块来调节,在调节排矿口大小时要注意破碎比和生产率之间的相互关系。在一定的范围内,增加偏心轴的转数,可以提高破碎机的生产能力,但是也会增加破碎单位重量矿石的电能消耗。转速太大,会使破碎腔中已被破碎的矿石来不及排出,而产生堵塞现象,反而使生产能力降低,电能消耗增加,因此,颚式破碎机应有一个最适宜的转数。5 实习体会 通过这次实习我们了解了现代机械制造工业的生产方式和工艺过程。熟悉工程材料主要成形方法和主要机械加工方法及其所用主要设备的工作原理和典型结构、工夹量具的使用以及安全操作技术。 通过实习了解机械制造工艺知识和新工艺、新技术、新设备在机械制造中的应用。培养和锻炼了劳动观点、质量和经济观念,强化遵守劳动纪律、遵守安全技术规则和爱护国家财产的自觉性,提高了我们的整体综合素质。给我们的大学生活留下了美好的回忆。河北建筑工程学院毕业设计(论文)开题报告课题名称复摆颚式破碎机(250400)设计学 院: 机械工程学院 专 业: 机械设计制造及其自动化 班 级: 机101 学生姓名: 杨晨晖 学 号: 2010307139 指导教师: 肖溪 马轶群 课题来源导师课题课题类别工程设计一、论文资料的准备颚式破碎机按照活动颚板的摆动方式不同,可以分为简单摆动式颚式破碎机(简摆颚式破碎机)、复杂摆动式颚式破碎机(复摆颚式破碎机)和综合摆动式颚式破碎机三种。其中复摆颚式破碎机是破碎中等粒度的石料中最常用的破碎设备之一。由于其结构简单、价格低廉、操作简单、坚固耐用、维护容易等优点,早已成为我国生产最多、使用最广的破碎设备。这种破碎机可破碎各种硬度的矿石和岩石,在大中型矿山的粗碎作业中应用非常广泛。复摆颚式破碎机是利用两颚板对物料的挤压和弯曲作用,粗碎或中碎各种硬度物料的破碎机械。 其破碎机构由固定颚板和可动颚板组成,当两颚板靠近时物料即被破碎,当两颚板离开时小于排料口的料块由底部排出。电动机驱动皮带和皮带轮,通过偏心轴使动颚上下运动,当动颚上升时肘板与动颚间夹角变大,从而推动动颚板向固定颚板接近,与其同时物料被压碎或劈碎,达到破碎的目的;当动颚下行时,肘板与动颚夹角变小,动颚板在拉杆,弹簧的作用下,离开固定颚板,此时已破碎物料从破碎腔下口排出。随着电动机连续转动而破碎机动颚作周期运动压碎和排泄物料,实现批量生产。颚式破碎机的结构主要有机架、偏心轴、大皮带轮、飞轮、动颚、侧护板、肘板、肘板后座、调隙螺杆、复位弹簧、固定颚板与活动颚板等组成,其中肘板起到保险作用。复摆颚式破碎机与简摆式相比较,其优点是:质量较轻,构件较少,结构更紧凑,破碎腔内充满程度较好,所装物料块受到均匀破碎,加以动颚下端强制性推出成品卸料,故生产率较高,比同规格的简摆颚式破碎机的生产率高出20-30%;物料块在动颚下部有较大的上下翻滚运动,容易呈立方体的形状卸出,减少了像简摆式产品中那样的片状成分,产品质量较好;具有结构简单合理、产量高、破碎比大、齿板寿命长、成品粒度均匀、动力消耗低、维修保养方便等优点,是目前国内最先进的机型。我国自50年代生产颚式破碎机以来,在破碎机设计方面经历了类比、仿制、图解法设计阶段,目前正向计算机辅助设计阶段过渡。生产制造的颚式破碎机越来越大、性能越来越好,品种越来越多,并在国际上占有一定的市场。全面总结颚式破碎机在设计、使用和测试方面的经验,积累适合我国破碎机结构特点的实验资料和数据,建立破碎机最优化设计的理论与方法并使之推广普及是提高我国颚式破碎机技术性能和赶超国际先进水平的关键。经过近十几年的发展,国内破碎机械和筛分机械的某些方面已经达到国际先进水平。颚式破碎机以其结构简单、安全可靠的优点问世百余年,仍在工程中广泛使用。各种不同型号的颚式破碎机虽经常期实践,不断改进,但其工作原理和结构大同小异
温馨提示:
1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
2: 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
3.本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
提示  人人文库网所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
关于本文
本文标题:复摆颚式破碎机(250*400)设计【11张CAD图纸+WORD毕业论文】【农业机械资料】
链接地址:https://www.renrendoc.com/p-402068.html

官方联系方式

2:不支持迅雷下载,请使用浏览器下载   
3:不支持QQ浏览器下载,请用其他浏览器   
4:下载后的文档和图纸-无水印   
5:文档经过压缩,下载后原文更清晰   
关于我们 - 网站声明 - 网站地图 - 资源地图 - 友情链接 - 网站客服 - 联系我们

网站客服QQ:2881952447     

copyright@ 2020-2025  renrendoc.com 人人文库版权所有   联系电话:400-852-1180

备案号:蜀ICP备2022000484号-2       经营许可证: 川B2-20220663       公网安备川公网安备: 51019002004831号

本站为文档C2C交易模式,即用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知人人文库网,我们立即给予删除!