外文翻译--常用的液压系统的动力源是泵和蓄能器_第1页
外文翻译--常用的液压系统的动力源是泵和蓄能器_第2页
外文翻译--常用的液压系统的动力源是泵和蓄能器_第3页
外文翻译--常用的液压系统的动力源是泵和蓄能器_第4页
外文翻译--常用的液压系统的动力源是泵和蓄能器_第5页
已阅读5页,还剩7页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

附 录 附录 A 英文部分: The commonly used sources of power in hydraulic systems are pumps and accumulators . Similarly,accumulator connected to atmosphere will dischange oil at atmosphere pressure until it empty. only when connected to a system having resistance to flow can pressure be developed. Three types of pumps find use in fluid-power systems: 1,rotary,2,reciprocating,3,or piston-type,and 3,centrifugal pumps. Simple hydraulic system may use but one type of pump . The trend is to use pumps with the most satisfactory characteristics for the specific tasks involved . In matching the characteristics of the pump to the requirements of the hydraulic system , it is not unusual to find two types of pumps in series . For example , a centrifugal pump may be to supercharge a reciprocating pump , or a rotary pump may be used to supply pressurized oil for the contronls associated with a reversing variabledisplacement pumps . Most power systems require positive displacement pumps . At high pressure , reciprocating pumps are often preferred to rotary pumps . Rotary pumps These are built in many differnt designs and extremely popular in modern fluid power system . The most common rotay-pump designs used today are spurgear , internal gear ,generated rotor , sliding vane ,and screew pumps . Ehch type has advantages that make it most suitable for a given application . Gear pumps Gear pumps are the simplest type of fixed displacement hydraulic pump available . This type consists of two external gear , generally spur gear , within a closed-fitting housing . One of the gear is driven directly by the pump drive shaft . It ,in turn , then drives the second gear . Some designs utilize helical gears ,but the spur gear design predominates . Gear pumps operate on a very simple principle , illustration Fig.7.3 . As the gear teeth unmesh , the volume at the inlet port A expands , a partial vacuum on the suction side of the pump will be formed . Fluid from an external reservoir or tank is forced by atmospheric pressure into the pump inlet . The continuous action of the fluid being carried from the inlet to the discharge side B of the pump forces the fluid into the system . Pressure rise in a spur-gear pump is produced by the squeezing action on the fluid as it is expellde from between the meshing gear teeth and the casing . Fluid from the discharge side is prevented from returing to the inlet side by the clearance between the gears and houseing . Vane pumps The vane pump ,illustration 7.4 , consists of a housing that is eccentric or offset with respect to the drive shaft axis . In some models this inside surface consists of a cam ring that can be rotated to shift the relationship between rotor are rectangular and extend radially from a center radius to the outside diameter of the rotor and from end to end . A rectangular vane that is essentially the same size as the slot is inserted in the slot and is free to slide in and out . As the rotor turns , the vanes thrust outward , and the vane tips track the inner surface of the housing , riding on a thin film of fluid . Two port or end plates that engage the end face of the ring provide axial retention . Centrifugal force generally contributes to outward thrust of the vane . As they ride along the eccentric housing surface , the vane move in and out of the rotor slots . The vane divide the area between the rotor and casing into a series of chambers .The sides of each chamber are formed by two adjacent vanes ,the port or end plates , the pump casing and the rotor . These chambers change in change in volume depending on their respective position about the shaft . As each chamber approaches the inlet port , its vanes move outward and its volume expands , causing fluid to flow into the expanded chamber . Fluid is then carried within the chamber around to the dischange port . As the chamber approaches the discharge port , its vanes are pushed inward ,the volume is reduced , and the fluid is forced out the discharge port . The variable-volume vane pump can be adjusted to discharge a different volume of fluid while running at constant speed , simply by shifting the cam ring with respect to the rotor .When the pump components are in position such that the individual chambers achieve their maximun volume as they reach the inlet port , the maximum volume of fluid will be moved . If the relationship between housing and rotor is changed such that the chambers achieve their minmum of zero volume as they reach the inlet port , the pump delivery will be reduced to zero . Since the vane pump housing or cam ring must be shifted to change the eccentricity and vary the output , variable-displacement vane pumps cannot have the closed end fit common to fixed-displacement vane pumps . Volumetric efficiency is in the range of 90% to 95% . These pumps retain their efficiency for a considerable length of time since compensation for wear between the vane ends and the housing is automatic .As these surfaces wear , the vanes move farther outward from their slots to maintain contact with the housing . Vane pump speed is limited by vane peripheral speed . High peripheral speed will cause cavitation in suction cavity . which results in pump damage and reduced flow . An imbalance of the vanes can cause the oil film between the vane tips and the cam ring to break down , resulting in metal-to-metal contact and subsequent increased wear and slipage . One metheod applied to eliminate high vane thrust loading is a dual-vane construction . In the dual-vane construction , two independent vanes are located in each rotor slot . Chambered edges along the sides and top of each vane from a channel that essentially force causes the vane to follow the contour of each pair of vanes . Centrifugal force causes the vane to follow the contour of the cam-shaped ring . There is just sufficient seal between the vanes and ring without destroying the thin oil film . Piston-type pump Two basic types of piston or reciprocating pumps are the radial piston and the axial typese , both are available as fixed or variable displacement models . Axial piston pumps may be further divided into in-line and bent axis types . All piston pumps operate by allowing oil to flow into a pumping cavity as a piston retreats and then forcing the oil out into another chamber as the piston advances . Design differences among pumps lie primarily in the methods of separating inlet from outlet oil . In-line piston pump The siplest typeof axial piston pump is the swash plate in-line design , illustration 7.5 .The cylinder are connected though piston shoes and a retracting ring , so that the shoes beat anainst an angled swash plate . As the block turns ,the piston shoes follow the swash plate ,causing the piston to reciprocate . The ports are arranged in the valve plate so that the pistons pass the inlet port as they are being pulled out and pass the outlet port as they are being forcing back in . The angle of the swash plate controls the delibery . Where the swash plate is fixed , the pump is of the constant-displacement type . In the variable-displacement , inline piston pump , the swash plate is moumted on a pivoted yoke . As the swash plate angle is increased , the cylinder stroke is increase , resulting in a greater flow . A pressure compensator control can position the yoke automatically to maintain a constant output pressure . Operation of he inline pump compensator control is shown schematically in Fig.7.6 .The control can position the yoke automatically in Fig.7.6 . The control consists of a compensator valve balanced between load pressure and the force of a spring , a yoke piston controlled by the compensator valve to move the yoke , and a yoke retun spring . With no outlet pressure , the yoke return spring moves the yoke to the full delibery position .As pressure builds up ,it acts against the end of the valve spool .When the pressure is high enough to overcome the valve spring , the spool is displaced and oil enters dis placement . If the pressure falls off , the spool moves back , oil is discharged from the piston to the inside of the pump case , and the spring returns the yoke to a greater angle . The compensator thus adjusts the pump output to whatever is required to develop and maintain the preset pressure . This prevents excess power losses bu relief valve operation at full pump volume during holding or clamping . There compensator thus adjusts the pump output to whatever is required to develop and maintain the preset pressure . This prevents excess power losses by relief valve operation at full pump volume during holding or clamping . There is a variation of the swash plate in-line pump . It is a design where the swash plate turns , but the cylinder barrel remains stationary . The plate is canted so that it wobbles as it turns . This action pushes the pistons in and out the stationary cylingder barrel . This type of in-line pump contains a separate inlet and outlet check valve for each piston since the pistons do not move past the inlet and outlet port . BENT-axis piston pump Illustration 7.7 show a bent-axial piston pump , which contatins a cylinder block assembly in which the pistons are equally spaced around the cylinder block axis . Cylinder bores are parallel to the axis . The cylinder block turns with the drive shaft , but at an offest angle . The piston rods are attaached to the drive shaft flange by ball joints . A universal link keys the cylinder block to the drive shaft to maintain alignment and assure that they turn together . The link does not transmit force except to accelerate and decceltate the cylinder block and to overcome resistance of the block revolving in oil filled housing . As the shaft roates , distance between any one piston and the valving surface changes continually . Each piston moves away from the valving surface during one half of the revolution and toward the valving surface during the other half . The inlet chamber is in line as the pistons move away , and the outletr chamber is in line as the pistons move closer , thus drawing liquiring in during one half of the inlet chamber as the pistons are moving away from the pintle . Thereforce , during rotation , pistons draw liquid into the cylinder bores as they pass the inlet side of the pinntle and force that liquid out of the bores as they pass the outlet side of the pintle . The displacement of this pump varies with the offset angle , the maximum angle being 30 degree ,the minimum zero . Fixed displacement models are usually avaiable with 23 degree angle .In the variable displacement construction a yoke with an external control is used to change the angle . With some contronls , the yoke can be moved over center to reverse the direction of flow from the pump . Pump/system interaction Frequently , hydraulic system designers choose off-the-shelf pumps with little cocern other than supplying sufficient flow at available input power . Early enphasis that positive displacement pumps supply only flow and that pressure is developed by the system suggests that , as a minmum , the pump should be chosem in light of several overall requirements and with system detailed design and the nature of the working fluid well in mind . Positive displacement pumps generate flow . In a fixed delivery pump , provisions must be made to dissipate flow or system pressure will rise until a rupture occurs . The usual means of accomplishing flow control is to place a relief valve inthe high pressure line . When the pressure rise above an established amoumt ,the relief valve will vent excess flow back to the reservoir . In such systems , pump flow and relief valve capacity must be carefully matched to assure proper venting . Flow from a high pressure line through a relief valve to a low pressure element is wasted hydraulic horsepower , which can be calculated from the following relationship : hp=PQ/1714 Where : Q = flow in gpm This wasted horsepower is converted to heat in the hydraulic system . If not properly removed , the heat can damage the fluid , elastomer seals , and other organic material in the system . Pressure-compensated variavle delivery pumps do not require a relief valve in the high pressure line . The pressure compensation feature eliminates the need for the relief valve . In nearly all working systems ,however , at least one is used on just-in-case basis . The use of a pressure compensator , while avoiding dependence on a relief valve , brings on its own problems . The actuator -spring-spool arrangement in the compensator is a dynamic , damped-mass-spring arrangement . However , when the system calls for a chang in axhieve their maxmum volume as they reach the inlet port , the maximum volume of fluid will ve moved . If the relationship between housing and rotor is changed such that the chambers achieve their minimum of zero volume as they reach the inlet port , the pump delivery will be reduced to zero . Since the vane pump housing or cam ring must be shifted to change the eccentricity and vary the output , variable-displacement vane pumps cannot have the closed end fit common to fixed-displacement pumps . Volumetric efficiency is the range of 90% to 95% . These pumps retain their efficiency for a considerable length of time since compensation for wear between the vane ends and the housing is automatic . As these surfaces wear , the vanes move farther outward from their slots to maintain contact with the housing . Vane pump speed is limited by vane peripheral speed . High peripheral speed will cause cavitation in suction cavity , which results in pump damage and reduced flow . An imbalance of the vanes can cause the oil film between the cane tips and the cam ring to break down , resulting in metal-to-metal contact and subsequent increased wear and slipage . One method applied to eliminate high vane thrust loading is a dual-vane construction . In the dual-vane construction , tow independent vanes are located in each totor slot chmbered edges along the sides and top of each vane from a channel that essentially balances the hydraulic pressure on the top and bottom of each pair of vanes . Centrifugal force cause the vane to follow the contour of the cam-shaped ring .There is just sufficient seal between the vanes and ring without destroying the thin oil film . 附录 B 中文部分: 常用的 液压系统的 动力源 是 泵和蓄 能 器。 一般情况下, 一个 蓄能器在正常的大气压力下,连续的 向 各系统中压入液压 油 , 直至 将所储存的能量全部用完为止。 只有当 其 连接 的 系统 中, 具有抗流压力 时 才能 够 得到 补充。 在液压系统和液力系统中,常使用液压泵有三种类型: 1、回转式, 2、 往复式 , 3、 活塞式 或者 离心 式。 简单液压系统 一般使用的都是第一 类 液压 泵 。 目前的 发展 趋势是 针对具体的工作任务和工况,选用最佳的液压泵类型。在符合特性和要求的液压泵中,找到两种不同类型的液压泵式很常见的。 例如 , 离心泵 ,往复泵都可以 可对 系统 增压 , 旋转泵 和变量液压泵联合使用 也可以提供高压的液压油。 大部分 动力 系统还需要采取 容积式液压泵 泵 。而在较高的体统压力下,往复泵往往 要优 于回转泵 。 回转泵 这些 形式的液压泵因为具有 许多不同的设计 形式 而极受欢迎 , 在现代流体动力系统。 最常见的旋转泵的设计 形式,包括内部使 用齿轮 的、 内部 使用 转子 的、内部采用滑动叶片的和使用 螺杆 的。 其中, 每一种类型都有 其独特的优点,都有其最适合的一定的应用场合。 齿轮泵 齿轮泵是 可以提供的 最简单的一种液压泵 。 这 一 类型 的液压泵一般包括 两个外 啮合的 齿轮 , 一般 是 圆柱 直 齿轮 ,安装 在一个 密封的壳体里面。 其中 一个 齿轮 由液压泵的传动轴直接驱动, 第一个齿轮 然后再推动第二轮 。还 有 一 些设计 中 利用螺旋齿轮 , 但是 一般以 齿轮设计为主 。 齿轮泵的 动作的原理 非常简单 ,如 插图 7.3 所示。 由于 在齿轮的轮齿在脱开啮合时, 进气道扩大 , 液压泵将会形成 局部真空 的具有吸力的空腔。 流体 在系统的压力下被 从外部 油箱 或罐体 中压入, 连续 运动 的 液压油在液压泵的作用下,从真空的吸力空腔中被送入排出液压油的一 侧 B侧。 直 齿轮泵 内的液压油被从脱开啮合的轮齿和套管之间不断的排出,这种挤压 运动使得齿轮泵内的 压力上升 ,从排油一侧来的液压油由于被 阻止 ,不能 返 回进 油一 侧的 轮齿的 间隙 和空腔。 叶片泵 如 插图 7.4所示, 叶片泵 一般是由一个相通 的 腔体, 是偏心或抵消对传动轴轴线 。 在 一些 模型内 的 表面设有一个凸轮环 ,一个 可旋转 移动的长方形的转子,转子的 径向延长 , 从一个中心 , 半径为外径的转子 ,到末端 结束 。 上 面 是 尺寸 大小相同的插槽 , 矩形叶片 一般 插入到插槽中 , 并且 可以自如的滑入和滑出。 当 转子 转动时, 叶片 被 向外 甩出, 而叶片 尖端则贴紧其运动 轨道 空腔的 内表面 , 处于液压油的薄膜的上面。 两个 油口 或 端 板 ,向 环形 的 端面提供轴向 的存储。 通常 离心 有助于叶片的 向外推 出。当叶片处于 偏心 空腔的 表面上 时,叶片 从转子的缝隙中甩出和甩。 叶片 将套管和 转子 之间的区域分成 一系列的 小空腔。每一个小空腔都是由 两个相邻叶 片,油口或者端盘,液压 泵壳 体和转子 形成。 这些 空腔的容积的 变化取决于 他们相对于轴的相对位置。 当 每个厅内靠近进 内气孔的时候, 其叶片向外移动,其 空腔的容积 膨胀, 造成 液压油 流入扩大 空腔。 流体 随后被带入围绕着排油孔的空腔内。当这些空腔靠近排油孔时,叶片被甩入腔内,空腔的容积减小,液压油随即被压出排油孔。 变量 叶片泵 , 可以 进行 调整 , 以 适应 不同的流体 排量,当 在 定常 速度下运行时, 只 需 要 改变 把 凸轮环 相对于 对转子 的位置即可。 当 液压 泵 的 部件的 处于各自的空腔在靠近吸油孔时达到最大的 位置 的时候,流体的最大排量就 将会改变。 如果腔体和转子的相对关系改变,则空腔在他们到达吸油孔的时候就达到了他们的最小容积 零容积,此时,液压泵的排油量也减少到零。 由于叶片泵 的空腔 或凸轮圈必须 变化从而 改变偏心率 即改变 输出 量 , 变 量 叶片泵 没 有 相应于 普通固定位移叶片泵 的固定端, 容积效率范围是90%至 95% 。 这些 液压泵能够在一个相当长的时间里保持 其效率 , 因为叶片两端和 空腔之间摩擦 补偿是自动的。 正是 由于这些表面的 摩擦 , 才使得叶片泵的 叶片 能够向外面甩出同时又不会脱离插槽。 叶片泵的速度 一般要受到 叶片圆周速度 的限制 。 过 高 的 圆周速度将导致空腔内 出现 负压 ,从而 导致 液压 泵损坏和 流量减小 。 一个 不平衡 的叶片 将会引起叶片顶端和 凸轮环 之间的 油膜 的破坏 , 从而进一步 导致金属 和 金属 之间的直接 接触,因而增加了磨损和 叶片泵的动力传动损耗 。 消除这种叶片泵的叶片的高推力负荷的方法之一就是采用双叶片结构。 在双叶式 结构中 , 每 两个 互相 独立的叶片是 分别设置 在每个转子槽 中的 。腔 室的 边缘两旁和顶部叶片每一个 渠道, 基本上 形成了一个 十字 状, 每个一双叶片等高 。 在 离心力 的作用下,使得 叶片 随着 凸轮 环的外部轮廓的变化而变化 。 当叶片和凸轮环之间形成了足够大的间隙的时候,将会 破坏油膜。 活塞式泵 两种基本类型的活塞 液压泵或者是 往复 式液压泵都是 活塞径向和轴向类型的 , 两者均可作为定 量泵 或可变排量 泵模型 。 其中, 轴向柱塞泵, 又可 以 进一步分为 线性柱塞泵 和弯曲轴 型柱塞泵两种类型 。 所有 的 活塞式 液压泵的运行原理 , 都是通过液压油 流入泵腔 而推动 活塞 向后面移动 ,然后 活塞再向前移动,从而将液压油排出,使得液压油进入泵的另一个腔室中 。 不同的泵的 设计差异泵主要在于 活塞进入和推出从而将液压油 分离 的 方法 。 直轴式 柱塞泵 最简单的 轴向柱塞泵是 将 冲板 进行线性化 设计, 如 插图 7。 5 所示,气缸 与活塞的回缩盘之间 相连 , 使 移动的回缩盘成 倾斜式。 当倾斜圆盘转动的时候 , 柱 塞 的端脚 斜盘 上运动 , 从而使得 活塞 杆不断的往复的运动,同时因为油 口分别安排在阀板 上 , 能够 使活塞通过进气道, 当它们运动到一定的位置时 ,通过 油 口 将液压油推 出 排油 口。 斜盘的倾斜 角 度决定了柱塞泵的排量。在这里,斜盘的位置是 固定 的 ,而 泵的位移 是恒定的。 在变量 的线性柱塞泵中, 逆止阀活塞泵,冲板是装在一个铰链的枷锁。 由于冲板角度的增大,气缸 冲程增加, 形成 了更大的流量。 由于 压力补偿控制 位置 的 作用 ,自动保持恒定输出压力。 线性柱塞泵的运行原理就是如插图 7.6所示 。 在图中,能够自动的控制枷锁 的定位 。 这种控制由 一个补偿阀 来 平衡负载压力和 系统的压力 ,枷锁活塞 由 补偿阀 移动另一个 枷锁 来实现控制。 由于压力无法卸载 , 枷锁回位弹簧的 推动 枷锁 直到临界 的 位置 。 由于压力 的 累积,它 的动作是组织 阀芯 末端 。当压力高至足以克服阀 的 弹簧 力的时候 ,阀芯 就会变换位置,同时,液压 油 也会 进入 原来的空腔中。 假如压力 下降 ,阀芯 向后移动 , 液压 油 被 活塞 排出而进入液压泵的管道 。系统就会使枷锁回到一个更大的角度。 补偿器调节泵的输出量, 从而 达到任何要求达到的更高的压力或

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论