



免费预览已结束,剩余1页可下载查看
下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
3.1随机事件及其概率名师导航三点剖析 一、确定性现象和随机现象 在一定条件下,事先就能断定发生或不发生某种结果,这种现象就是确定性现象.在一定条件下,某种现象可能发生,也可能不发生,事先不能断定出现哪种结果,这种现象就是随机现象.我们再看以下两个简单的试验. 试验1:一个盒中有10个完全相同的白球,搅拌均匀后从中任意摸取一个球. 试验2:一个盒中有10个完全相同的球,其中有5个白的,另外5个是黑色的,搅拌均匀后从中任意摸取一球. 对于试验1,在球没有取出之前,我们就能确定取出的必定是白球.这种试验,根据试验开始时的条件,就可以确定试验的结果,而对试验2来说,在球没有取出以前,我们从试验开始时的条件,不能确定试验的结果是白的还是黑的,也就是说这一试验的结果,出现白球还是出现黑球,在试验之前是无法确定的,这就具有了随机性.于是,试验1在试验之前就能断定它是一个确定的结果,这种试验所对应的现象就称为确定性现象.确定性现象非常广泛,例如:“早晨,太阳必然从东方升起”“边长为a、b的矩形的面积必为ab”“如果a、b都是实数,那么ab=ba”等等.试验2所代表的类型,它有多于一种可能的试验结果,但试验之前不能肯定试验会出现哪一个结果.就一次试验而言,看不出什么规律,这种试验所代表的现象就称为随机现象.在客观世界中随机现象也是极为普遍的,如:“某一地区的年降雨量”“打靶射击时,弹着点到靶心的距离”“校对印刷厂送来的清样,每一万字中有错、漏字10个”等等. 对于试验1或试验2取出白球或取出黑球这一现象,若让其条件实现一次,就进行了一次试验,而试验的每一种可能的结果都是一个事件.如试验1中,从盒中取出一个白球就是一个事件. 二、必然事件、不可能事件与随机事件 必然事件是指在一定的条件下,必然会发生的事件.不可能事件是指在一定条件下,肯定不会发生的事件.必然事件与不可能事件反映的就是在一定条件下的确定性现象. 随机事件是指在一定条件下,可能发生也可能不发生的事件,随机事件反映的是随机现象. 必然事件、不可能事件与随机事件统称为事件,一般用大写英文字母a、b、c表示. 例如:异性电核,相互吸引;电阻不为0的导线通电后发热等是必然事件.在常温常压下,石墨能变成金刚石;实心铁球丢入水中,铁球浮起等是不可能事件.掷一枚硬币,国徽朝上;明天进行的某场足球赛的比分为31等是随机事件. 对于随机事件,虽然知道会出现哪些结果,却事先不能确定具体会发生哪一种结果,即无法确定某个随机事件是否发生.但是,如果在相同条件下大量重复试验时,可以发现随机事件的发生与否呈现出某种规律性.概率论正是研究随机现象这种数量规律性的一个数学分支. 这三种事件是根据一件事情在发生前能否预知结果来划分的.必然事件和不可能事件都是在一定的条件下,结果能否发生是可以预知的,而随机事件却是在这一定的条件下,结果能否发生是无法确定的,即可能发生,也可能不发生. 三、随机事件的概率 1随机事件的概率的定义 一般地,如果随机事件a在次试验中发生了次,当试验的次数很大时,我们可以将事件a发生的频率作为事件a发生的概率的近似值,即p(a). 随机事件指在一定条件下可能发生也可能不发生的事件,它的发生具有不确定性,但随着试验次数的大量增加,随机事件发生的频率逐渐趋于稳定,这个稳定值我们把它叫做概率.概率从数量上反映了随机事件发生的可能性的大小,要得到它必须进行大量的重复试验,因而,它是对大量重复试验来说存在的一种统计规律.若掷15次硬币,正面出现5次就断定正面出现的概率是,显然是错误的.因为它不是从大量重复的试验统计出来的.对单次试验来说,随机事件的发生是随机的,如某种子的发芽率为80%,随机选取10粒种子检测,若前2粒种子都未发芽,能不能说以下的8粒种子都发芽呢?不能,对任何一粒种子来说它不发芽的可能性都是20%.因而在做题时要重点把握概率的意义. 2随机事件的概率的基本性质 必然事件和不可能事件分别用和来表示.不可能事件和必然事件虽然是两类不同的事件,但它们可以看作是随机事件的两个极端情况.用这种对立又统一的观点去看待它们,有利于认识它们的内在联系.由概率的定义,显然有p()=1;p()=0.又如果随机事件a在n次试验中发生了m次,则mn.所以,我们可以得出概率的基本性质. 随机事件的概率有两个基本性质: (1)对于任意一个事件a,都有0p(a)1;(2)必然事件的概率是1,不可能事件的概率是0.问题探究 问题1: 下列有三种说法:概率就是频率;某厂产品的次品率为3%,是指“从该厂产品中任意地抽取100件,其中一定有3件次品;从一批准备出厂的灯泡中随机抽取15只进行质量检测,其中有1只是次品,说明这批灯泡中次品的概率为.我们应该怎样看待这些说法呢? 探究:我们知道在实验中,某一事件出现的次数与总实验次数的比例叫频率,它是一个确定的值,描述的是已经发生了的事件的特征.但是对于尚未发生的事件,我们只能描述它发生的可能性的大小.不同的人做同一实验的结果不一定相同,即便是同一人在两次相同实验中的结果也可能不同,因而不同的人或同一人做两次相同实验,某一事件发生的频率可以不同,但随着实验次数的增多,在大量重复进行同一实验时,某一事件发生的频率总是接近于某一常数,在它附近摆动,这时就把这个常数叫做事件的概率,它实质上是频率的近似值,所以说法是错误的;对第种说法,次品率是3%,只能说明任意抽取一只灯泡进行检测,检测出是次品的可能性或概率是3%,并不一定是抽取100件,其中一定有3件次品.在这100件产品中可能一件次品也没有,可能有2件次品,也可能有3件次品,甚至这100件全是次品,所以说法是错误的;从一批准备出厂的灯泡中随机抽取15只进行质量检测,其中有1只是次品,说明抽样灯泡中次品的频率为,而并非这批灯泡的次品概率.实际上从这一批灯泡中随机抽取15只进行质量检验相当于进行了15次随机试验,而每次试验的结果也是随机的,所以这15次试验的结果也是随机的.“从一批准备出厂的灯泡中随机抽取15只进行质量检测,其中有1只是次品”这只是多个随机结果中的一个,它只能说明这次抽样检验的次品的频率为,而次品的概率则可能比高或比低,并不一定是,所以说法也是错误的. 问题2: 我们知道,当试验次数n很大时,事件a发生的频率的近似值就可以看为事件的概率,那么概率和频率之间有着怎样的区别和联系? 探究:随机事件的频率,是事件a发生的次数与试验次数的比值,若它具有一定的稳定性,总在某个常数附近摆动,且随着试验次数的不断增多,摆动的幅度将会减小,这时频率所趋近的常数就是事件a发生的概率.因此概率可以看作是频率在理论上的期望值,它从数量上反映了一个事件发生的可能性的大小.而频率是不能脱离具体的n次试验的试验值的,在相同的条件下做两组相同的试验所得的频率就可能不同.从概率的定义可知:频率是概率的近似值,而概率则是频率的稳定值.精题精讲例1试判断下列事件是随机事件、必然事件还是不可能事件: (1)抛一块石块,下落; (2)在标准大气压下且温度低于0时,冰融化; (3)某人射击一次,中靶; (4)如果ab,那么ab0; (5)从分别标有号数1,2,3,4,5的5张标签中任取一张,得到4号签; (6)某电话机在1分钟内收到2次呼叫; (7)没有水分,种子能发芽; (8)在常温下,焊锡熔化.思路解析(1)中抛一块石块,由于受重力的作用必然下落;(2)中由物理学知识,可知在标准大气压下且温度低于0时,冰不会融化;(3)中某人射击一次可能中靶也可能不中靶;(4)中由不等式的基本性质可知,如果ab,那么ab0;(5)中从分别标有号数1,2,3,4,5的5张标签中任取一张,这5个数字都有被抽到的可能;(6)中某电话机在1分钟内收到呼叫的次数也是随机的;(7)由生物学知识知没有水分,种子不可能发芽;(8)由物理学知识可知在常温下,焊锡不可能熔化. 答案:由于(1)(4)这两个事件肯定会发生,所以(1)(4)是必然事件;而(3)(5)(6)这三个事件可能发生也可能不发生,所以(3)(5)(6)是随机事件;而(2)(7)(8)这三个事件肯定不会发生,所以(2)(7)(8)是不可能事件.绿色通道判断一个事件是随机事件、必然事件或不可能事件的依据,主要是利用它们的定义.随机事件是在一定条件下可能发生也可能不发生的事件.应注意,事件的结果是相应于“一定条件”而言的.要弄清某一随机事件,必须明确何为事件发生的条件,何为在此条件下产生的结果.例2李老师在某大学连续3年主讲经济学院的高等数学,下表是李老师这门课3年后的考试成绩分布情况:成绩人数90分以上438089分1827079分2606069分905059分6250分以下8 经济学院一年级的学生王小慧下学期将修李老师的高等数学课,用已有的信息估计她得以下分数的概率: (1)90分以上; (2)6069分; (3)60分以上.思路解析利用概率的计算公式求解即可.如果随机事件a在次试验中发生了次,当试验的次数很大时,我们可以将事件a发生的频率作为事件a发生的概率的近似值,即p(a).由于参加考试的人数较多,则各组数据的频率可以近似地看作是这一组数据的概率. 答案:利用计算器计算可得(1)0.067. (2)0.140. (3)0.891绿色通道如果随机事件a在次试验中发生了次,当试验的次数很大时,我们可以将事件a发生的频率作为事件a发生的概率的近似值,即p(a).例3为了测试贫困地区和发达地区同龄儿童的智力,出了10个智力题,每个题10分.然后作了统计,下表是统计结果.贫困地区:参加测试的人数3050100200500800得60分以上的人数162752104256402得60分以上的频率发达地区:参加测试的人数3050100200500800得60分以上的人数172956111276440得60分以上的频率 (1)利用计算器计算两地区参加测试的儿童中得60分以上的频率; (2)求两个地区参加测试的儿童得60分以上的概率; (3)分析贫富差距为什么会带来人的智力的差别.思路解析首先利用频率的计算公式计算出各组数据的频率,再由此估计出概率,再对数据进行比较和分析.答案:(1)贫困地区:参加测试的人数3050100200500800得60分以上的人数162752104256402得60分以上的频率0.530.540.520.510.510.50发达地区:参加测试的人数3050100200500800得60分以上的人数172956111276440得60分以上的频率0.5670.5800.5600.5550.5520.550 (2)概率分别为0.5和0.55 (3)经济上的贫困导致该地区生活水平落后,儿童的健康和发育会受到一定的影响;另外经济落后也会使教育事业发展落后,导致智力出现差别.例4检查某工厂产品,其结果如下:抽出产品数(n)51060150600900120018002400次品数(m)0371952100125178248次品频率 (1)计算表中的次品频率; (2)利用所学知识对表中数据作简要的数学分析.思路解析计算次品出现的频率,再对这些数据进行比较、归纳和分析,与所学内容联系起来.答案:(1)根据频率计算公式,计算出次品出现的频率,如下表:抽出产品数(n)51060150600900120018002400次品数(m)037195
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 【正版授权】 IEC 62386-351:2025 FR Digital addressable lighting interface – Part 351: Particular requirements – Control devices – Luminaire-mounted control devices
- 新解读《GB-T 3858-2014液力传动 术语》
- 人教版2025-2026学年六年级数学上册圆的图形计算专项训练【含答案】
- 建筑施工-安全培训课件-安全及绿色施工创优
- 重庆中考成语考点课件
- 人教PEP版六年级英语上册全册复习教案
- 老年人茶艺课件
- 《体育2篮球》课程简介与教学大纲
- 《语言学概论》课程介绍与教学大纲
- 老年人汽车知识培训总结课件
- 腰椎间盘突出症小讲课
- 主管岗位培训计划方案
- 城市轨道交通员工职业素养(高职)全套教学课件
- 大学美育(第二版) 课件 第四单元:绘画艺术 课件
- 个人防水补漏协议
- 作文格子稿纸800字-A4打印版
- DFMA设计制造可行性分析检查表范例
- 大象版五年级上册《科学》全一册全部课件(共25课时)
- 变电站二次电缆及回路编号
- 大学美术鉴赏(第2版)PPT完整全套教学课件
- 2023年放射科护理质量与安全管理计划汇编6篇
评论
0/150
提交评论