




全文预览已结束
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
StudyonNeuralNetworksControlAlgorithmsfor AutomotiveAdaptiveSuspensionSystems L J Fu J G Cao SchoolofAutomobileEngineering Chongqing InstituteofTechnology XingshengRoadNo 04Yangjiaping Chongqing China400050 E mail flj Abstract Thesemi activesuspension whichconsistsof passivespringandactiveshockabsorberinthelightof differentroadconditionsandautomobilerunningconditions is themostpopularautomotivesuspensionbecauseactive suspensioniscomplicatedinstructureandpassivesuspension cannotmeetthedemandsofvariousroadconditionsand automobilerunningconditions Inthispaper aneurofuzzy adaptivecontrolcontrollerviamodelingofrecurrentneural networksofautomotivesuspensionispresented Themodeling ofneuralnetworkshasidentifiedautomotivesuspension dynamicparametersandprovidedlearningsignalsto neurofuzzyadaptivecontrolcontroller Inordertoverify controlresults amini busfittedwithmagnetorheologicalfluid shockabsorberandneurofuzzycontrolsystembasedonDSP microprocessorhasbeenexperimentedwithvariousvelocity androadsurfaces Thecontrolresultshavebeencompared withthoseofopenlooppassivesuspensionsystem These resultsshowthatneuralcontrolalgorithmexhibitsgood performancetoreductionofmini busvibration I INTRODUCTION Themainfunctionsofautomotivesuspensionsystemare toprovidesupporttheweightofautomobile toprovide stabilityanddirectioncontrolduringhandlingmaneuvers andtoprovideeffectiveisolationfromroaddisturbances Thesedifferenttasksleadtoconflictingdesignrequirements Thesemi activesuspension whichconsistsofpassive springandactiveshockabsorberwithcontrollabledamping forceinthelightofdifferentroadconditionsandautomobile runningconditions isthemostpopularautomotive suspensionbecausetheactivesuspensioniscomplicatedin structureandconventionalpassivesuspensioncannotmeet thedemandsofdifferentroadconditionsandautomobile runningconditions Simi activesuspensionwithvariable magnetorheological MR fluidshockabsorbershassome advantagesinreducingautomobilevibrationatrelativelow castandpower Sofar thereareanumberofcontrol methodsthathavebeendevelopedforsemi active suspension startwithskyhookmethoddescribedby Karnoopp etal l Thismethodattemptstomaketheshock absorberexertaforcethatisproportionaltotheabsolute velocitybetweensprungmasses Someinvestigationsuse C R Liao B Chen SchoolofAutomobileEngineering Chongqing InstituteofTechnology XingshengRoadNo 04Yangjiaping Chongqing China400050 E mail chenbao linearsuspensionmodel whichislinearizedaroundthe operationalpoints andcontrolalgorithmarederivedusing linearmodels suchasLQGandrobustcontrol 2 3 These controlmethodscannotmakeafullexploitationof semi activesuspensionresourcesbecauseofautomotive suspensionisinherentnon linearperformance Inorderto improveperformanceofnonlinearsuspensionsystem some intelligentcontroltechniques suchasfuzzylogiccontrol neuralnetworkscontrolandneurofuzzycontrol havebeen recentlyappliedtononlinearsuspensioncontrolby researchers 4 5 Inthispaper aneurofuzzyadaptivecontrolcontrolleris appliedtocontrolsuspensionvibrationviamodelingof recurrentneuralnetworksofautomotivesuspensionand continuouslyvariableMRshockabsorbers Thecontroller structuresdesignandneurofuzzycontrolalgorithmsare presentedinsection2 Arecurrentneuralnetworks dynamicsmodelingofsuspensionareshownrespectivelyin section3 Thecontrolsystemexperimentationsaregivenin section4andsomeconclusionsarefinallydrawninsection 5 HI NEUROFUZZYADAPTIVECONTROLALGORITHMSFOR AUTOMOTIVESUSPENSIONS Theneurofuzzycontrolsystempresentedinthispaper showninFigure1 iscomposedofaneurofuzzynetwork andarecurrentneuralnetworkmodelingofmini bus suspension Theneurofuzzynetworkisdefinedasadaptive controller whichhasfunctionoflearningandcontrol The functionofrecurrentneuralnetworkistoidentifymini bus suspensionmodelparameters y t andyd t aresystem actualoutputandsystemdesireoutputrespectivelyinFigure 1 xl t issystemerrorofsystemactualoutputbetween systemdesireoutput x2 t issystemerrorrateofsystem actualoutputbetweensystemdesireoutput xi t and x2 t aredefinedasfellows xI t e t y t Yd t 1 X2 t e t e t 1 e t 2 0 7803 9422 4 05 20 00C2005IEEE 1795 Fig 1 structureofneuralnetworkscontrolsystemforsuspension networkscontrolsystem Theglobalsetsoflinguistic variablesaredefinedrespectivelyasfellows E E 1 AtJ uU U U Theneurofuzzycontrollerhas fourlayersne urons inwhichthefirstandthesecondlayers correspondtothefuizzyrulesif part thethirdlayer correspondstotheinferenceandtheforthlayercorresponds tothefuzzyrulesthen part Thesetsxl x2and uare respectivelydivinedintosevenfuzzysubsetsofwhichfuzzy setsX1 X2Uarecomposedasfallowsrules X1 NB NM NS ZE PS PM PB X2 NB NM NS ZE PS PM PB U NB NM NS ZE PS PM PB Inthispaper theGaussianmembershipfunctionareused inelementsoffuzzysets X1 X2andtheelementsof fuzzysetUisdefinedasfollowingmembershipfunction ci u J0 otherwise 0 3 I 3 k 1 2 3 49 j 13 23 3 7 4949 Layer4 4 3 wkand0 4 I 4 0 3 k 1k 1 Wherexl t x2 t aretheinputsofneuralnetworks wkisweightofneuralnetwork 0 4 iStheoutputof neuralnetworksinwhich0 4 U ai b j arethecentral valuesofGaussianmembershipfunction Learning algorithmsoftheneuralnetworkscontrollerisbasedon gradientdescentbymeansoferrorsignalback propagation method Theerrorback propagationalgorithm saccomplish synapticweightadjustmentthroughminimizationofcost function 5 m ALGORITHMFORRECURRENTNEURALNETWORKS SUSPENSIONDYNAMICALMODELING Arecurrentneuralnetworkdesignedtoapproximateto theactualoutputofsuspension y t isthree layerneural networkwithonelocalfeedbackloopinthehiddenlayer whosearchitecturesareshowninFigure3 Thepropertythat isofprimarysignificanceforrecurrentneuralnetworkisthe abilityofthenetworktolearnfromitsenvironmentandto improveitsperformancesbymeansofprocessof adjustmentsappliedtoitsweights Therecurrentnetwork withinputsignal II t u t andI2 t y t 1 has outputy t bylocalfeedbackloopneuroninthehidden layerwhoseoutputsumis Sj t correspondingtothe neuronjth 3 Fig 2 schematicofneuralnetworkscontrollerforadaptivesuspension WhereU Eu Theinput outputispresentedasfollows accordingtoFigure2 Layer1 I 1 x t andO xi t i 1 2 Layer2 I 2 t ai 2 b 2 and O epx i 1 2j 1 2 3 7 Layer3 I 13 t u X2Q I and Fig 3 schematicofneuralnetworksmodelingofsuspensionsystem 4 Sy w i t WJD Xj t 1 i1 i t wjXj t l q yj t 1w xi t j l 5 6 1796 wherew I w areweightoftherecurrentneural network Xj t is outputofneuronwithlocalfeedback loopneuroninthehiddenlayer p qareinputneuron numberandfeedbackneuronnumberrespectively The activationfunctionforbothinputneuronsandoutput neuronsislinearfunction whiletheactivationforneurons inthehiddenlayerissigmoidfunction heobjectivefunctionE t canbedefmedinthetermsof theerrorsignale t as E t y t y t 2 1e2 t 7 22 Thatis E t istheinstantaneousvalueoftheerror energy Thestep by stepadjustmentstothesynapticweights ofneuronarecontinueduntilthesystemreachsteadystate i e thesynapticweightsareessentiallystabilized DifferentiatingE t withrespecttoweightvectorw yields aE t 8 e t 0Y 8 Fromexpression 1 2 and 3 differentiatingA t 0DI withrespecttotheweightvectorw1 w w Yrespectively yields aS t x t As t woax1Q W aXI t aWj J aWj From 4 5 and 6 analyzing valueofsynapticweightisdeterminedby w t 1 w t q e t 89 t 12 whereqtheleaning rateparameter Adetailed convergenceanalysisoftherecurrenttrainingalgorithmis rathercomplicatedtoacquiretheleaning rateparameter value Accordingtoexpression 13 theweightvectorw forrecurrentneuralnetworkcanbeadjusted Weestablisha theLyapunovfunctionasfollowsV t 1 2 e2 t whosechangevalueAV t canbedeterminedaftersome titerations inthesensethat 13 Wehavenoticedthattheerrorsignale t aftersomet iterationscanbeexpressedasfollowsfromexpression 13 and 14 ae t ao t ae t ae t Aw qe t 77e t the aw O waw O w Lyapunovfunctionincrementcandeterminedaftersomet iterationsasfollows 14 Mtt q t v2 e t V t where t 2 2jt1 6 t 2 A 10 lp q 2 5l0 t ll 2 ql 2 77 O 220w 9 7maxa t 29 if q f 2 thenAV t O w ax1 t D and aWj x1 t uxi yieldsrespectivelyrecurrentformulas ax1 t a f S t FX x tt1 1 ax1 O WjD axi t aNi afS t w a t i 4 LaN i ax1 o 11 avn 0 Havingcomputedthesynapticadjustment theupdated namelytherecurrenttrainingalgorithmisconvergent IV ROADTESTANDRESULTSANALYSES Tomakeademonstrationthevalidityofneuralcontrol algorithmproposedinthepaper anexperimentalmini bus suspensionwithMRfluidshockabsorberhasbeen manufacturedinChina Themini busadaptivesuspension systemconsistsofaDSPmicroprocessor 8acceleration sensors 4MRfluidshockabsorbers and 1controllable electriccurrentpowerwithinputvoltage12V TheDSP microprocessorreceivessuspensionvibrationsignalinput fromaccelerometersmountedrespectivelysprungmassand un sprungmass Inaccordancewithvibrationsignaland controlschemeinthispaper theDSPmicroprocessor adjustsdampingofadaptivesuspensionbyapplication controlsignaltothecontrollableelectriccurrentpower connectedtoelectromagneticcoilinMRfluidshock absorbers Magneticfieldproducedbytheelectromagnetic coilinMRfluidshockabsorberscandvarydampingforce inbothcompressionandreboundbyadjustmentofflow 1797 II V t 12 t 1 e2 t 2 behaviorsofMRfluidsindampingchannels Raodtestonmini busadaptivesuspensionbasedneural networkscontrolpresentedinthispaperarecarriedoutinD classroadsurfacesrespectivelyinrunningvelocity 30 40 50km h Duringroadtest experimentalmini busruns eachtestconditionataconstantspeed Thetestexperiments ofadaptivesuspensionwithneuralnetworksandpassive suspensionsystemwerecarriedoutrepeatedlyundersame roadsurfaceandrunningvelocity TestresultslistedinTable 1haveshownthattheadaptivesuspensionwithneural networkscanreducevibrationpowerspectraldensitiesof bothsprungmassandun sprungmass Figure4isthemin bussuspensionvibrationpower spectraldensitiesofbothsprungmassandun sprungmass withpassiveandadaptivesuspensionsystembyDclass roadsurface Itisclearthatneuralnetworkscontrol improvesperformancesofmini bussuspensionwithmainly improvementsoccurringaboutsprungmassresonancepeak Thepowerspectraldensitiesindicatethattheadaptive suspensionsystemwithneuralnetworkscontrolcanreduce mini busvibrationgreatlycomparedwithpassive suspension Ifexcellentfizzycontrolrulesandrational modelingofshockabsorberandsuspensioncanbeobtained theadaptivesuspensionsystemwithneuralnetworkscontrol willimprovefartherridecomfortandroadholdingand handlingstabilityofautomobileinthefuture TABLEI min bussuspensionroadtestresults sprungmassandun sprungmassaccelerationr m s Values Dclassroad Speed30 1km h 40 1m h 50 kmlh PassiveControlreducePassiveControlreducePassiveControlreduce mass10 37560 325213 40 41400 344916 70 46940 396615 5 mass pg1 60111426610 91 89751 660312 52 34682 065212 0 mass IC 4a 1 t 0 ri 0110 1 lo1 Fry 0Qgco1okaId e la r10f1 Frcqv O Fig 4 min bussuspensionvibrationpowerspectraldensitiesofsprungmass left andun sprungmass right withcontrolandpassive runningspeed40km h V CONCLUSIONS Inthispaper anewrecurrentneuralnetworks oriented suspensionmodelandneurofuzzycontrolschemesforthe mini bussuspensionsystemwereinvestigated Uponthe requirementofusing8accelerationsensors aDSP controllerwithgainschedulingwasdeveloped ConsideringthecomplexityoftheMRfluidshock absorber theactuatordynamicshasbeenincorporated duringthehardware in the loopsimulations Itwas demonstratedthattheadaptivecontrolsystemcould 1798 achieveacompetitivecontrolperformancebyadoptingthe neurofuzzycontrolschemesandrecurrentneural networks orientedsuspension Becausethecontrollaw design thegainschedulingstrategy andthe hardware in the loopsimulationmethoddevelopedinthis paperarerestricted
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年建筑行业工程师资格认证考试指南及模拟题集
- 电力供应基础知识培训总结
- 2025年电力工程师中级实操技能考试指南与模拟题集
- 2025年初级新媒体运营人员面试实战指南及预测题
- 2025年厨师长中级面试技巧及实操模拟题答案
- 2025年初级设计师面试攻略与模拟题详解
- 2025年高考数学复习冲刺卷及答案详解
- 2025年新员工入职前培训资料仓库管理面试模拟题及解答指南
- 2025年特岗教师招聘考试英语语法与写作模拟题详解
- 2025年特岗教师招聘考试初中数学命题趋势分析
- T-CBDA 86-2025 建筑幕墙、采光顶及金属屋面工程质量验收标准
- 厨房消防安全培训
- 小陈 税务风险应对常见指标与答复思路
- 2025年《中华人民共和国档案法》知识培训试题及答案
- 2026年高考政治一轮复习:必修2《经济与社会》知识点背诵提纲
- 2025至2030年中国建筑膜行业市场调查研究及发展趋势预测报告
- 2025年北京市中考语文试卷(含答案与解析)
- (正式版)HGT 22820-2024 化工安全仪表系统工程设计规范
- 钳工手工制作六角螺母详细
- 实数单元测试卷含答案
- 英国“海湾”级后勤船坞登陆舰
评论
0/150
提交评论