已阅读5页,还剩7页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
课题:3.1.2用二分法求方程的近似解教学目标:知识与技能 通过具体实例理解二分法的概念及其适用条件,了解二分法是求方程近似解的常用方法,从中体会函数与方程之间的联系及其在实际问题中的应用过程与方法 能借助计算器用二分法求方程的近似解,并了解这一数学思想,为学习算法做准备情感、态度、价值观 体会数学逼近过程,感受精确与近似的相对统一教学重点:重点 通过用二分法求方程的近似解,体会函数的零点与方程根之间的联系,初步形成用函数观点处理问题的意识难点 恰当地使用信息技术工具,利用二分法求给定精确度的方程的近似解教学程序与环节设计:创设情境组织探究探索发现尝试练习作业回馈课外活动由二分查找及高次多项式方程的求问题引入二分法的意义、算法思想及方法步骤体会函数零点的意义,明确二分法的适用范围二分法的算法思想及方法步骤,初步应用二分法解决简单问题二分法应用于实际1 二分法为什么可以逼近零点的再分析;2 追寻阿贝尔和伽罗瓦教学过程与操作设计:环节教学内容设计师生双边互动创设情境材料一:二分查找(binary-search)(第六届全国青少年信息学(计算机)奥林匹克分区联赛提高组初赛试题第15题)某数列有1000个各不相同的单元,由低至高按序排列;现要对该数列进行二分法检索(binary-search),在最坏的情况下,需检索( )个单元。1000 10 100 500二分法检索(二分查找或折半查找)演示材料二:高次多项式方程公式解的探索史料由于实际问题的需要,我们经常需要寻求函数的零点(即的根),对于为一次或二次函数,我们有熟知的公式解法(二次时,称为求根公式)在十六世纪,已找到了三次和四次函数的求根公式,但对于高于4次的函数,类似的努力却一直没有成功,到了十九世纪,根据阿贝尔(Abel)和伽罗瓦(Galois)的研究,人们认识到高于4次的代数方程不存在求根公式,亦即,不存在用四则运算及根号表示的一般的公式解同时,即使对于3次和4次的代数方程,其公式解的表示也相当复杂,一般来讲并不适宜作具体计算因此对于高次多项式函数及其它的一些函数,有必要寻求其零点的近似解的方法,这是一个在计算数学中十分重要的课题师:从学生感兴趣的计算机编程问题,引导学生分析二分法的算法思想与方法,引入课题生:体会二分查找的思想与方法师:从高次代数方程的解的探索历程,引导学生认识引入二分法的意义组织探究二分法及步骤:对于在区间,上连续不断,且满足的函数,通过不断地把函数的零点所在的区间一分为二,使区间的两个端点逐步逼近零点,进而得到零点近似值的方法叫做二分法给定精度,用二分法求函数的零点近似值的步骤如下:1确定区间,验证,给定精度;2求区间,的中点;3计算:师:阐述二分法的逼近原理,引导学生理解二分法的算法思想,明确二分法求函数近似零点的具体步骤分析条件“”、“精度”、“区间中点”及“”的意义环节呈现教学材料师生互动设计组织探究 若=,则就是函数的零点; 若,则令=(此时零点); 若011,1.500.51.25,1.500.25如此列表的优势:计算步数明确,区间长度小于精度时,即为计算的最后一步例2借助计算器或计算机用二分法求方程的近似解(精确到)解:(略)思考:本例除借助计算器或计算机确定方程解所在的大致区间和解的个数外,你是否还可以想到有什么方法确定方程的根的个数?结论:图象在闭区间,上连续的单调函数,在,上至多有一个零点师:引导学生利用二分法逐步寻求函数零点的近似值,注意规范方法、步骤与书写格式生:根据二分法的思想与步骤独立完成解答,并进行交流、讨论、评析师:引导学生应用函数单调性确定方程解的个数生:认真思考,运用所学知识寻求确定方程解的个数的方法,并进行、讨论、交流、归纳、概括、评析形成结论环节呈现教学材料师生互动设计探究与发现1) 函数零点的性质从“数”的角度看:即是使的实数;从“形”的角度看:即是函数的图象与轴交点的横坐标;若函数的图象在处与轴相切,则零点通常称为不变号零点;若函数的图象在处与轴相交,则零点通常称为变号零点2) 用二分法求函数的变号零点二分法的条件表明用二分法求函数的近似零点都是指变号零点师:引导学生从“数”和“形”两个角度去体会函数零点的意义,掌握常见函数零点的求法,明确二分法的适用范围尝试练习1) 教材P106练习1、2题;2) 教材P108习题31(A组)第1、2题;3) 求方程的解的个数及其大致所在区间;4) 求方程的实数解的个数;5) 探究函数与函数的图象有无交点,如有交点,求出交点,或给出一个与交点距离不超过的点作业回馈1) 教材P108习题31(A组)第36题、(B组)第4题;2) 提高作业: 已知函数(1)为何值时,函数的图象与轴有两个交点?(2)如果函数的一个零点在原点,求的值 借助于计算机或计算器,用二分法求函数的零点(精确到); 用二分法求的近似值(精确到)环节呈现教学材料师生互动设计课外活动查找有关系资料或利用internet查找有关高次代数方程的解的研究史料,追寻阿贝尔(Abel)和伽罗瓦(Galois),增强探索精神,培养创新意识收获与体会说说方程的根与函数的零点的关系,并给出判定方程在某个区间存在根的基本步骤,及方程根的个数的判定方法;谈谈通过学习求函数的零点和求方程的近似解,对数学有了哪些新的认识?课题:3.2.1几类不同增长的函数模型 教学目标:知识与技能 结合实例体会直线上升、指数爆炸、对数增长等不同增长的函数模型意义,理解它们的增长差异性过程与方法 能够借助信息技术,利用函数图象及数据表格,对几种常见增长类型的函数的增长状况进行比较,初步体会它们的增长差异性;收集一些社会生活中普遍使用的函数模型(指数函数、对数函数、幂函数、分段函数等),了解函数模型的广泛应用情感、态度、价值观 体验函数是描述宏观世界变化规律的基本数学模型,体验指数函数、对数函数等函数与现实世界的密切联系及其在刻画现实问题中的作用教学重点:重点 将实际问题转化为函数模型,比较常数函数、一次函数、指数函数、对数函数模型的增长差异,结合实例体会直线上升、指数爆炸、对数增长等不同函数类型增长的含义 难点 怎样选择数学模型分析解决实际问题教学程序与环节设计:创设情境组织探究探索研究巩固反思作业回馈课外活动实际问题引入,激发学生兴趣选择变量、建立模型,利用数据表格、函数图象讨论模型,体会不同函数模型增长的含义及其差异总结例题的探究方法,并进一步探索研究幂函数、指数函数、对数函数的增长差异,形成结论性报告师生交流共同小结,归纳一般的应用题的求解方法步骤强化基本方法,规范基本格式收集一些社会生活中普遍使用的函数模型,了解函数模型的广泛应用教学过程与操作设计:环节教学内容设计师生双边互动创设情境材料:澳大利亚兔子数“爆炸”在教科书第三章的章头图中,有一大群喝水、嬉戏的兔子,但是这群兔子曾使澳大利亚伤透了脑筋1859年,有人从欧洲带进澳洲几只兔子,由于澳洲有茂盛的牧草,而且没有兔子的天敌,兔子数量不断增加,不到100年,兔子们占领了整个澳大利亚,数量达到75亿只可爱的兔子变得可恶起来,75亿只兔子吃掉了相当于75亿只羊所吃的牧草,草原的载畜率大大降低,而牛羊是澳大利亚的主要牲口这使澳大利亚头痛不已,他们采用各种方法消灭这些兔子,直至二十世纪五十年代,科学家采用载液瘤病毒杀死了百分之九十的野兔,澳大利亚人才算松了一口气师:指出:一般而言,在理想条件(食物或养料充足,空间条件充裕,气候适宜,没有敌害等)下,种群在一定时期内的增长大致符合“J”型曲线;在有限环境(空间有限,食物有限,有捕食者存在等)中,种群增长到一定程度后不增长,曲线呈“S”型可用指数函数描述一个种群的前期增长,用对数函数描述后期增长的组织探究 例1假设你有一笔资金用于投资,现有三种投资方案供你选择,这三种方案的回报如下:方案一:每天回报40元;方案二:第一天回报10元,以后每天比前一天多回报10元;方案三:第一天回报0 .4元,以后每天的回报比前一天翻一番请问,你会选择哪种投资方案?探究:1)在本例中涉及哪些数量关系?如何用函数描述这些数量关系?2)分析解答(略)3)根据例1表格中所提供的数据,你对三种方案分别表现出的回报资金的增长差异有什么认识?师:创设问题情境,以问题引入能激起学生的热情,使课堂里的有效思维增强生:阅读题目,理解题意,思考探究问题师:引导学生分析本例中的数量关系,并思考应当选择怎样的函数模型来描述生:观察表格,获取信息,体会三种函数的增长差异,特别是指数爆炸,说出自己的发现,并进行交流师:引导学生观察表格中三种方案的数量变化情况,对于“增加量”进行比较,体会“直线增长”、“指数爆炸”等环节教学内容设计师生双边互动组织探究4)你能借助计算器或计算机作出函数图象,并通过图象描述一下三种方案的特点吗?5)根据以上分析,你认为就作出如何选择?师:引导学生利用函数图象分析三种方案的不同变化趋势生:对三种方案的不同变化趋势作出描述,并为方案选择提供依据师:引导学生分析影响方案选择的因素,使学生认识到要做出正确选择除了考虑每天的收益,还要考虑一段时间内的总收益生:通过自主活动,分析整理数据,并根据其中的信息做出推理判断,获得累计收益并给出本全的完整解答,然后全班进行交流例2某公司为了实现1000万元利润的目标,准备制定一个激励销售部门的奖励方案:在销售利润达到10万元时,按销售利润进行奖励,且奖金(单位:万元)随销售利润(单位:万元)的增加而增加但奖金不超过5万元,同时奖金不超过利润的25%现有三个奖励模型: 问:其中哪个模型能符合公司的要求?探究:1) 本例涉及了哪几类函数模型?本例的实质是什么?2)你能根据问题中的数据,判定所给的奖励模型是否符合公司要求吗?师:引导学生分析三种函数的不同增长情况对于奖励模型的影响,使学生明确问题的实质就是比较三个函数的增长情况生:进一步体会三种基本函数模型在实际中的广泛应用,体会它们的增长差异师:引导学生分析问题使学生得出:要对每一个奖励模型的奖金总额是否超出5万元,以及奖励比例是否超过25%进行分析,才能做出正确选择环节呈现教学材料师生互动设计组织探究3)通过对三个函数模型增长差异的比较,写出例2的解答生:分析数据特点与作用判定每一个奖励模型是否符合要求师:引导学生利用解析式,结合图象,对三个模型的增长情况进行分析比较,写出完整的解答过程生:进一步认识三个函数模型的增长差异,对问题作出具体解答探究与发现幂函数、指数函数、对数函数的增长差异分析:你能否仿照前面例题使用的方法,探索研究幂函数、指数函数、对数函数在区间上的增长差异,并进行交流、讨论、概括总结,形成较为准确、详尽的结论性报告师:引导学生仿照前面例题的探究方法,选用具体函数进行比较分析生:仿照例题的探究方法,选用具体函数进行研究、论证,并进行交流总结,形成结论性报告师:对学生的结论进行评析,借助信息技术手段进行验证演示巩固与反思尝试练习:1) 教材P116练习1、2;2) 教材P119练习小结与反思:通过实例和计算机作图体会、认识直线上升、指数爆炸、对数增长等不同函数模型的增长的含义,认识数学的价值,认识数学与现实生活、与其他学科的密切联系,从而体会数
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年大学烹饪(烹饪工艺创新)试题及答案
- 2025年中职(国土资源调查与管理)土地规划综合测试题及答案
- 2025年大学地理(地理研究方法)试题及答案
- 2025年高职水土保持技术(水土保持工程施工)试题及答案
- 上海市普陀区2026届初三一模数学试题(含答案详解)
- 上海市虹口区2026届初三一模物理试题(含答案)
- 神奇的折叠屏技术
- 2026四川广安市广安区白市镇人民政府选用片区纪检监督员1人备考题库及1套完整答案详解
- 2026广西钦州市文化广电体育和旅游局急需紧缺人才招1人备考题库及参考答案详解一套
- 2022-2023学年广东深圳多校九年级上学期11月联考数学试题含答案
- 部编版八年级上册语文《期末考试卷》及答案
- 麻醉药品、精神药品月检查记录
- 医院信访维稳工作计划表格
- 蕉岭县幅地质图说明书
- 地下车库建筑结构设计土木工程毕业设计
- (完整word版)人教版初中语文必背古诗词(完整版)
- GB/T 2261.4-2003个人基本信息分类与代码第4部分:从业状况(个人身份)代码
- GB/T 16601.1-2017激光器和激光相关设备激光损伤阈值测试方法第1部分:定义和总则
- PDM结构设计操作指南v1
- 投资学-课件(全)
- 幼儿园课件:大班语言古诗《梅花》精美
评论
0/150
提交评论