零件图合图[18张].dwg
零件图合图[18张].dwg

保险座塑料注塑模具设计【三维SW】【19张CAD图纸+WORD毕业论文】【抽芯】

收藏

压缩包内文档预览:
预览图
编号:408780    类型:共享资源    大小:8.71MB    格式:RAR    上传时间:2015-03-02 上传人:好资料QQ****51605 IP属地:江苏
50
积分
关 键 词:
保险 塑料 注塑 模具设计 cad 图纸 word 毕业论文 模具
资源描述:

【温馨提示】 购买原稿文件请充值后自助下载。

[全部文件] 那张截图中的文件为本资料所有内容,下载后即可获得。


预览截图请勿抄袭,原稿文件完整清晰,无水印,可编辑。

有疑问可以咨询QQ:414951605或1304139763

保险座塑料注塑模具设计
摘要

模具是工业生产中使用极为广泛的主要工艺装备,它是当代工业生产的重要手段和工艺发展方向,许多现代工业的发展和技术水平的提高,在很大程度上取决于模具工业的发展水平。本论文主要介绍了保险座的塑料注塑模具的设计。
设计中首先通过分析塑件的形状及工艺特性,选择了合适的模具设计方案;其次是对注塑机的选择,包括注射机的初选和注射机有关参数的校核,并确定了注射机;再次完成模具的结构设计,包括分型面的选择和确定、型腔数目的确定及型腔的排列、浇注系统的设计、成型零件结构设计、抽芯机构设计、推出机构的选择、冷却系统的设计、标准模架的选择。最后对成型零件尺寸进行计算,确定工艺参数。
采用此模具能够保证塑件尺寸外形以及表面要求,而且成本低、结构简单、开模容易、效率高,具有较强的实用性。

关键词:塑料注塑模具;注塑机;结构设计
The design of plastic injection mould for the Safety box
Abstract
Mold is widely used in industrial production the main technological equipment, It is an important means of modern industrial production and process development direction ,Many modern industrial development and the improvement of the technical levels ,Largely depends on the development of die and mould industry level. This paper mainly introduced the plastic injection mold insurance seat of design.
First through analysis in the design of plastic parts, process characteristics and shape ,choose the proper mould design ,Second is the choice of injection, mcluding injection machine of primaries and injection machine related parameter respectively ,To determine the injection machine;Complete the die structure design again ,Enclose the choice and determination parting ,Cavity number of determining and cavity arrangement ,The design of gating system ,Molding parts structure design ,Core-pulling mechanism design, selection of launch institutions, cooling system design, standard formwork choice ,Finally calculated for molding parts size, determine the process parameters.
Using this mold can guarantee plastics dimension appearance and surface requirements , And low cost, simple structure and easy to open mold, high efficiency, with strong practicability.

KeyWords: Plastic injection mold; injection machine; Structure design





主要符号表
K 安全系数 E 材料弹性模量
Smax 塑料的最大收缩率 P1 脱模阻力
Smin 塑料的最小收缩率 C 型芯成型部分断面的平均
P0 单位面积的包紧力 h 型芯被塑料包紧部分的长度
Δs 塑件公差 P0 单位面积的包紧力
D腔 型腔內形尺寸 Φ 安全系数
Qcp 塑料平均收缩率 S 顶顶出行程
ds 塑件外径基本尺寸 1 富裕量
Ds 塑件內形基本尺寸 2 顶出行程富裕量
h腔 凸模/型芯高度尺寸 α 倾斜角
Hs 塑件內形深度基本尺寸 Q 抽拔阻力
P1 动模受的总压力 P 斜导柱所受的弯曲力
F 塑件的投影面积 ε 塑件收缩率
P 型腔压力 f 摩擦系数
K 修正系数 μ 塑料泊桑比
B 动模垫板的宽度 L 支撑块的跨距

目录
1  绪论 1
1.1 前言 1
1.2模具发展现状及发展方向 1
1.2.1塑料模具工业的发展现状 1
1.2.2我国塑料模具发展走势 3
1.3本课题的设计内容 5
2  模具方案的论证和选择 6
2.1分型面的选择 6
2.2分型面选择原则 6
2.2.1分型面的分类 6
2.2.2分型面的选择原则 7
2.2.3分型面的确定 7
3  注射机的选择 8
3.1零件的材料及其注射工艺性 8
3.1.1 ABS的工艺条件 8
3.2型腔数目的确定及分布 8
3.3注塑机的选择 9
3.4注射机参数校核 9
3.4.1最大注射量校核 9
3.4.2最大注射压力的校核 9
3.4.3锁模力的校核 9
3.4.4开模行程校核 10
4  浇注系统的设计 11
4.1浇注系统的作用 11
4.2浇注系统的组成 11
4.2.1主流道部分设计 11
4.2.2冷料穴设计 12
4.2.3分流道设计 12
4.2.4浇口设计 13
5  成型零件工作尺寸的计算 14
5.1 影响塑件尺寸精度的因素 14
5.2模具成型零件的工作尺寸计算 14
5.2.1成形收缩率 15
5.2.2模具成形零件的制造误差 15
5.2.3零件的磨损 15
5.2.4模具的配合间隙的误差 15
5.3型腔和型芯尺寸计算 15
5.3.1型腔径向尺寸计算 15
5.3.2型腔的深度尺寸 16
5.3.3型芯的径向尺寸 16
5.3.4型芯的高度尺寸 16
5.3.5中心距尺寸计算 16
5.4动模板的强度校核 16
6  导向机构设计 19
6.1 导向机构的作用和设计原则 19
6.1.1导向机构的作用 19
6.1.2导向机构的设计原则: 19
6.2导柱、导套的设计 19
6.2.1导柱的设计 20
6.2.2导套的设计 20
7  脱模机构的设计 21
7.1 基本考虑和要求 21
7.2 推出机构的确定 21
7.3 推件板脱模机构设计的特点和基本原则 21
7.4 顶杆横截面直径校核 22
7.4.1脱模力的计算 22
7.4.2推杆直径的校核 22
8  侧向分型与抽芯机构的设计 24
8.1 基本考虑和要求 24
8.1.1侧向分型与抽芯机构应具备的基本功能 24
8.2 抽芯机构的概述 24
8.3斜导柱抽芯机构设计原则与确定 24
8.4 斜导柱抽芯机构的有关参数计算 25
8.4.1抽芯距S 25
8.4.2斜导柱倾斜角的确定 25
8.4.3斜导柱直径的确定 26
8.4.4斜导柱长度的计算 27
8.5 滑块的设计 27
8.6 导滑槽的设计 28
8.7 滑块定位装置 28
8.7.1滑块的作用和结构形式 28
9  模具的材料 29
9.1 塑料模具用钢的必要条件 29
9.2 选择钢材的条件 29
9.3 本模具材料的选择 29
9.4 模具的淬火硬度 30
9.5 模具的表面粗糙度 30
9.6 热处理的选择 30
10  模具的可行性析 31
10.1其它结构零部件设计 31
10.2 本模具的特点 31
10.3 市场前景与经济效益分析 31
11  总结 32
参考文献 33
致谢 34
毕业设计(论文)知识产权声明 35
毕业设计(论文)独创性声明 36

1绪论
1.1 前言  
模具生产技术水平的高低,已成为衡量一个国家产品制造水平高低的重要标志,因为模具在很大程度上决定着产品的质量、效益和新产品的开发能力。现代模具工业有“不衰亡工业”之称。模具是工业生产的基础工艺装备,也是发展和实现少无切削技术不可缺少的工具。如汽车、拖拉机、电器、电机、仪器仪表、电子等行业有60%—80%的零件需用模具加工,轻工业制品的生产中应用模具更多。螺钉、螺母、垫圈等标


内容简介:
毕业设计(论文)中期报告题目:保险座塑料注塑模具设计系 别 机电信息系 专 业 机械设计制造及其自动化 班 级 姓 名 学 号 导 师 2013年 3 月 20 日本次设计的塑料件为一保险座,产品特点为:塑件的尺寸较小。在结构设计时需考虑凹模凸模的合理安排,及塑件侧面的小孔抽芯机构。零件CAD图塑件三维图1.设计(论文)进展状况1.1在开题的基础上进行了更详细的计算和设计,已优化了结构方案,并进一步的完成了模具装配草图的绘制。1.2通过计算塑料件的体积及查阅相关模具设计手册完成了注塑机的选择。1.3确定主流道的形式和尺寸。其浇口套的尺寸如图所示。 浇口套形式与尺寸1.4确定模腔数量及其排列方式、浇口形式。圆形端盖外形尺寸不大,为了我降低注射成本,根据所选注塑机的注射量,采用双型腔的模具。侧浇口侧浇口结构形式1.5计算并校核型腔部分的强度和刚度,根据保险座的高度确定型腔板的侧壁厚度,型芯固定板的厚度。并确动模板、顶出板,支块厚度及其模具安装方法。1.6完成了对模具工作部分尺寸及公差进行设计计算。1.7完成了模具零件结构设计。比如:导柱、导套、拉料杆、复位杆、顶杆、滑块等等。1.8初步绘制保险座的模具装配图如图所示。模具装配图1.9绘制了部分零件图。2.存在问题及解决措施2.1 数据未进行校对。解决措施:校对数据并修改装配图尺寸3.后期工作安排3.1完善模具结构装配图,并完成所有零件图的绘制工作。3.2完成模具零件的选材、工艺规程的编制。3.3对所有图纸进行校核,编写设计说明书,所有资料提请指导教师检查,准备答辩。指导教师签字: 年 月 日4A Typical Injection Mold Design Guide This checklist can be used as a general reference guide for injection mold design engineers. It is divided into 3 parts of a mold design process. Part 1 - Requirements to start your mold design: Check the injection machine where the mold is to be mounted. This will help you decide the size and structure of the mold. for ease of installation and other factors. Important notes: Locating ring size (or other positioning method) Nozzle size Method of clamping (Auto or manual) Temperature control system Determine the number of cavities and volume requirements. This will help you decide the material that you are going to use and other mold components that you will choose for cost effective design. Determine the gate location and size. Determine the location where ejector pin marks are prohibited. Part 2 - Mold base layout: Place cavities close to the center of the mold to minimize base size and runner length. Ensure that the molded part remains on the movable half (ejector half) upon opening of PL to facilitate proper ejection. Waterlines should be placed as evenly as possible to the contours of the cavity. Use support pillars underneath the cavity pockets. Use ejector guides for molds with small ejector pins and rectangular ejector pins. Provide eye-bolt hole for ease of mounting and dismounting. Install mold opening prevention locks on the operator side. Establish pry bar groove on the corners of the mold parting line to facilitate ease of mold opening during assembly and maintenance. By this time you may ask for the mold layout approval from the customer. Part 3 - Cavity/core details: Check material shrinkage. Locate portions (corners) for possible significant deflection and deformation. Maintain uniform wall thickness. Draft angle should be within dimension tolerance. Divide core blocks to simplify machining and provide gas vent path. Gate, small cores, and cores with shut-off fittings are better designed as insertable components for easy modification and repair. Watch out for possible deformation of core pins. Position the ejector pins on the ribs and other high strength locations. Ensure ejector balance. Detailing/part drawing: Include all parameters needed for processing -material, quantity, surface finish/texture, dimensions, tolerances and many more. Do not assume the machinist understands everything. Any design change and amendments to the mold must be re-approved by the customer or mold owner. Standard horizontal clamp presses deliver molten resin to the mold through a hole in the center of the stationary press platen. A material-delivery system usually consisting of a sprue, runners, and gates then leads the resin through the mold and into the cavity. These components of the material delivery system are discussed in this section. Sprues The sprue, oriented parallel to the press injection unit, delivers resin to the desired depth into the mold, usually the parting line. Though they can be cut directly into the mold, sprue bushings are usually purchased as off-the-shelf items and inserted into the mold (see figure 7-18). The head end of the sprue bushing comes premachined with a spherical recess typically 0.5- or 0.75-inch radius to receive and seal off against the rounded tip of the press injection nozzle. The sprue bushing flow-channel diameter typically tapers larger toward the parting line at a rate of 0.5 inch per foot. This eases removal of the molded sprue. The sprue orifice size, the diameter at the small end, comes standard in odd 1/32s from 5/32 to 11/32 inch. Sprue design can affect molding efficiency and ease of processing. In many molds, the greatest restriction to material flow occurs at the press nozzle tip and sprue orifice. These areas see the highest volumetric flow rate of the entire system. An excessively small sprue orifice can generate large amounts of material shear and lead to material degradation, cosmetic problems, and elevated filling pressure. The problem can be worse in the press nozzle tip because the tip orifice must be slightly smaller than the sprue orifice to avoid forming an undercut. The volumetric flow rate used during filling largely determines the correct sprue orifice size. Shot size and filling speed, as well as the flow properties of the specific resin, govern the required flow rate. * Large parts and/or parts needing fast filling speeds require large sprue orifice diameters to avoid problems associated with excessive flow shear. * As a general rule, amorphous resins and blends such as Makrolon polycarbonate, Lustran ABS, and Bayblend PC/ABS resins require larger sprues and runners than semicrystalline resins such as Durethan PA 6 and Pocan PBT. The diameter at the base of the sprue increases with increasing sprue length.Standard sprue taper, typically one-half inch per foot, leads to large base diameters in long sprues. This large base diameter lengthens cooling and cycle times and also leads to regrind problems. Figure 7-19 shows typical sprue sizes for Bayer amorphous resins as a function of shot size and filling time.Because the maximum shear rate in a sprue occurs at the orifice and the majority of shear heating and pressureloss takes place in the first two inches,these guidelines should apply to sprues of various lengths. Part geometry influences filling time to some extent.For example, parts with a mix of thick and thin features may need a fast filling speed to prevent premature cooling of the thin features. Other geometries may require slower filling speeds to prevent problems such as cosmetic defects or excessive clamp tonnage requirements. Hot sprue bushings provide one solution to this problem. Hot sprue bushings have a heated flow channel that transports material along its length in molten form,eliminating or shortening the molded cold sprue. Additionally, some molds rely on extension press nozzlesthat reach deep into the mold to reduce sprue length. Runners Unlike sprues, which deliver material depthwise through the center of the mold plates, runners typically transport material through channels machined into the parting line. Runner design influences part quality and molding efficiency. Overly thick runners can lengthen cycle time needlessly and increase costs associated with regrind. Conversely, thin runners can cause excessive filling pressures and related processing problems. The optimum runner design requires a balance between ease of filling,mold design feasibility, and runner volume. Material passing through the runner during mold filling forms a frozen wall layer as the mold steel draws heat from the melt. This layer restricts the flow channel and increases the pressure drop through the runner. Round cross-section runners minimize contact with the mold surface and generate the smallest per-centage of frozen layer cross-sectional area. As runner designs deviate from round, they become less efficient (see figure 7-20). Round runners require machining in both halves of the mold, increasing the potential for mismatch and flow restriction. A good alternative, the “round-bottomed” trapezoid, requires machining in just one mold half. Essentially a round cross section with sides tapered by five degrees for ejection, this design is nearly as efficient as the full-round design. The runner system often accounts for more than 40% of the pressure required to fill the mold. Because much of this pressure drop can be attributed to runner length, optimize the route to each gate to minimize runner length. For example, replace cornered paths with diagonals or reorient the cavity to shorten the runner. Figure 7-23 Family Mold The runner diameter feeding the smaller part was reduced to balance filling. Runners for multicavity molds require special attention. Runners for family molds, molds producing different parts of an assembly in the same shot, should be designed so that all parts finish filling at the same time. This reduces over- packing and/or flash formation in the cavities that fill first, leading to less shrinkage variation and fewer part-quality problems. Consider computerized mold- filling analysis to adjust gate locations and/or runner section lengths and diam-eters to achieve balanced flowto each cavity (see figure 7-23). The same computer techniques balance flow within multi-gated parts. Molds producing multiples of the same part should also provide balanced flow to the ends of each cavity. Naturally balanced runners provide an equal flow distance from the press nozzle to the gate on each cavity. Spoked-runner designs (see figure 7-24) work well for tight clusters of small cavities. However they become less efficient as cavity spacing increases because of cavity number or size. Often, it makes more sense to orient cavities in rows rather than circles. Rows of cavities generally have branched runners consisting of a primary main feed channel and a network of secondary or tertiary runners to feed each cavity. To be naturally balanced, the flow path to each cavity must be of equal length and make the same number and type of turns and splits. This generally limits cavity number to an integer power of two 2, 4, 8, 16, 32, etc. as shown in figure 7-25. Generally, the runner diameter decreases after each split in response to the decreased number of cavities sharing that runner segment. Assuming a constant flow rate feeding the mold, the flow-front velocity in the cavity halves after each split. The molding press flow-rate performance may limit the number of cavities that can be simultaneously molded if the press cannot maintain an adequate flow-front velocity. Artificially balanced runners provide balanced filling and can greatly reduce runner volume. Artificially balanced designs usually adjust runner-segment diameters to compensate for differences in runner flow length. For instance, in ladder runners, the most common artificially balanced runner design, a primary runner feeds two rows of cavities through equal-length secondary runners. The diameters of these secondary runners are made progressively smaller for the cavities with shortest runner flow distance (see figure 7-26). These designs require enough secondary runner length to flow balance using reasonable runner diameters. As a general rule, secondary runner length should be no less than 1/5 the flow distance from the inboard secondary/primary runner junction to the gates on the outboard cavities. Runners for three-plate molds initially convey material along the runner-split parting line and then burrow perpendicularly through the middle plate to the cavity parting line. Tapered drops typically project from the main runner to pinpoint gates on the part surface. To ease removal from the mold, these drops taper smaller toward the gate at a rate of about 0.5 inch per foot. Avoid long drops because the taper can lead to excessive thickness at the runner junction or flow restriction at the thin end. Three-plate runners usually require sucker pins or some other feature to old the runner on the stripper plate until the drops clear the center plate during mold opening. Be sure these features do not restrict flow. See figure 7-27 for three-plate runner and gate-design guidelines. Gates Except for special cases, such as sprue-gated systems which have no runner sections, gates connect the runner to the part. Gates perform two major functions, both of which require the thickness to be less than the runner and part wall. First, gates freeze-off and prevent pressurized material in the cavity from backing through the gate after the packing and holding phases of injection. Applied pressure from the press injection unit can stop earlier in the cycle, before the part or runner system solidifies, saving energy and press wear-and-tear. Secondly, gates provide a reduced-thickness area for easier separation of the part from the runner system. A variety of gate designs feed directly into the parting line. The common edge gate(see figure 7-28) typically projects from the end of the runner and feeds the part via a rectangular gate opening. When designing edge gates, limit the land length, the distance from the end or edge of the runner to the part edge, to no more than 0.060 inch for Bayer thermoplastics. Edge gates generate less flow shear and consume less pressure than most self degating designs. They are therefore preferred for shear-sensitive materials, high-viscosity materials, highly cosmetic applications, and large-volume parts. Fan gates and chisel gates, variations of the edge gate, flare wider from the runner (see figure 7-29) to increase the gate width. Chisel gates can provide better packing and cosmetics than standard edge gates on some thick-walled parts. Like the standard edge gate, the land length for fan gates should not exceed 0.060 inch at the narrowest point. Chisel gates taper from the runner to the part edge with little or no straight land area. Edge gates can also extend to tabs (see figure 7-30) that are removed after molding or hidden in assembly. These tab gates allow quick removal of the gate without concern about gate appearance. Edge gates may also extend from the side of a runner oriented parallel to the part edge (see figure7-31). This design, coupled with a “Z”-style runner, tends to reduce gate blush by providing uniform flow along the width of the gate and a cold-slug well at the end of the runner. To hide the large gate vestige left by large edge gates, the gate can extend under the edge as shown in figure 7-32. Because they extend under the mold parting surfaces, tunnel gates can reach surfaces or features that are not located on the parting line. The gates typically feed surfaces oriented perpendicular to the mold face. Depending upon their design, they degate during ejection or mold opening (see figures 7-33 and 7-34). Tunnel gates that degate during mold opening often require a sucker pin or a feature similar to a sprue puller to hold the runner on the ejector half of the mold. The runner must flex for the gate to clear the undercut in the mold steel. The gate may break or lock in the mold if the runner is too stiff or if the ejector pin is too close to the gate. Normally, the ejector pin should be at least two runner diameters away from the base of the gate. The orifice edge closest to the parting line must remain sharp to shear the gate cleanly. When molding abrasive materials such as those filled with glass or mineral, make the gate of hardened or specially treated mold steel to reduce wear. Also, consider fabricating the gate on an insert for easy replacement. The drop angle and conical angle must be large enough to facilitate easy ejection (see figure 7-35). Stiff materials, glass-filled grades for example, generally require drop angles and conical angles at the high side of the range shown in the figure. The modified-tunnel gate design (see figure 7-36) maintains a large flow diameter up to the gate shear-off point to reduce pressure loss and excessive shear heating. Curved-tunnel gates permit gating into the underside of surfaces that ar
温馨提示:
1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
2: 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
3.本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
提示  人人文库网所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
关于本文
本文标题:保险座塑料注塑模具设计【三维SW】【19张CAD图纸+WORD毕业论文】【抽芯】
链接地址:https://www.renrendoc.com/p-408780.html

官方联系方式

2:不支持迅雷下载,请使用浏览器下载   
3:不支持QQ浏览器下载,请用其他浏览器   
4:下载后的文档和图纸-无水印   
5:文档经过压缩,下载后原文更清晰   
关于我们 - 网站声明 - 网站地图 - 资源地图 - 友情链接 - 网站客服 - 联系我们

网站客服QQ:2881952447     

copyright@ 2020-2025  renrendoc.com 人人文库版权所有   联系电话:400-852-1180

备案号:蜀ICP备2022000484号-2       经营许可证: 川B2-20220663       公网安备川公网安备: 51019002004831号

本站为文档C2C交易模式,即用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知人人文库网,我们立即给予删除!