说明书.doc

吹风机外壳的模具设计与加工[三维UG]【13张CAD图纸+WORD毕业论文】【注塑模具类】

收藏

压缩包内文档预览:(预览前20页/共42页)
预览图 预览图 预览图 预览图 预览图 预览图 预览图 预览图 预览图 预览图 预览图 预览图 预览图 预览图 预览图 预览图 预览图 预览图 预览图 预览图
编号:408789    类型:共享资源    大小:2.69MB    格式:RAR    上传时间:2015-03-02 上传人:好资料QQ****51605 IP属地:江苏
50
积分
关 键 词:
吹风机 外壳 模具设计 加工 三维 ug cad 图纸 word 毕业论文 注塑 模具
资源描述:

【温馨提示】 购买原稿文件请充值后自助下载。

[全部文件] 那张截图中的文件为本资料所有内容,下载后即可获得。


预览截图请勿抄袭,原稿文件完整清晰,无水印,可编辑。

有疑问可以咨询QQ:414951605或1304139763

一、题目及专题:
1、题目  机械设备模具的计算机设计与加工              
2、专题   吹风机外壳的模具设计与加工                   
二、课题来源及选题依据
   本课题题目自拟;21世纪将成为塑料制品工业迅猛发展的时代,而大多数塑料制品的制造是靠塑料成型的,用模具生产的塑料制品具有高精度、高复杂程度、高一致性、高生产率和低消耗、低成本等特点。
三、本设计(论文或其他)应达到的要求:
  1.要了解整个模具行业近十年来设计的发展概况以及应用水平,特别是注塑模具设计的先进技术和方法。                        
   2.熟练掌握UG应用软件,了解目前应用较为广泛的其他应用软件,如Pro/E、Mastercam、AutoCAD软件等。                  
   3.对成型材料的成型特性有足够的了解,最重要的是掌握注塑模具的设计特点和结构特点。                                       4.我要解决的主要问题是设计吹风机外壳的注塑模具(特别是结构设计),最后需要利用UG软件绘出该零件注塑模具的三维图,然后利用UG出工程图,在用AutoCAD修改完善工程图,以及利用UG对凸、凹模进行加工仿真。 所有这些资料必须通过图书馆查找期刊文献、会议文献以及专业书籍得到,所以还要熟练资料的检索。观标准和主观标准综合评价重建图像的质量;                                  



摘  要
近几年好多国家都在发展机械行业,与机械相关的各个行业都越来越重视CAD/CAM技术,如今CAD/CAM技术已发展成为一项比较成熟的共性技术,我国家电工业的高速发展对模具工业,尤其是塑料模具提出了越来越高的要求,2004年,塑料模具在整个模具行业中所占比例已上升到30%左右,据有关专家预测,在未来几年中,中国塑料模具工业还将持续保持年均增长速度达到10%以上的较高速度的发展。国内塑料模具市场以注塑模具需求量最大,其中发展重点为工程塑料模具。同时还因为塑料制品及模具的3D设计与成型过程中3D分析正在塑料模具工业中发挥越来越重要的作用。在本次毕业设计中,通过运用三维实体造型高端软件UG对“吹风机外壳”外形进行3D造型,同时也设计了其塑料外壳注塑模的3D模型;还根据所设计的模具尺寸选择安装了相应的模架,最终生成了直观的结构设计图;此外还利用CAD绘制了模具装配图以及各种成型零件图。这是本人第一次利用UG软件对一整套模具进行设计,使大学四年所学的知识得到运用,并加以指导老师的指导,受益匪浅!

   关键词:CAD/CAM;塑料;模具;UG



Abstract
Years, a lot of countries in the development of the machinery industry, mechanical industry more and more attention to the CAD / CAM technology, today's CAD / CAM technology has developed into a more mature common technology, the rapid development of China's household electrical appliance industry moldindustry, especially the plastic mold ever-increasing demands, 2004, plastic mold in the mold industry proportion has risen to about 30% in the coming years, experts predict China plastic mold industrywill continue to maintain an average annual growth rate of more than 10% higher speed. Domestic plastic mold market to the demand for plastic injection mold, the focus of development for engineering plastics mold. Also because the plastic products and mold 3D design and molding process 3D analysis play an increasingly important role in the plastic mold industry. In this graduation project, through the use of dimensional solid modeling high-end software UG "hair dryer shell" shape 3D modeling, at the same time also designed the its plastic shell injection mold 3D model; also based on the design of the mold size choose to install the corresponding mold, the resulting intuitive structure design; addition, the use of CAD drawing mold assembly drawing and a variety of molded parts diagram. This is the first time I use the the UG software on a set of mold design, four years in college to learn to use the knowledge and to the guidance of the instructor and benefit!

Key words:CAD/CAM;plastics;mold;UG



目  录
摘  要 III
ABSTRACT IV
目  录 V
1 绪论 1
 1.1 本课题的研究内容和意义 1
 1.2 国内外的发展概况 2
2 产品材料 5
 2.1 成型产品材料 5
 2.2 注塑模具材料 6
3 成型工艺分析 8
 3.1 吹风机外壳零件图 8
 3.2 塑件的工艺性分析..............................................................................................................8
   3.2.1 功能分析 8
   3.2.2 塑件的原材料分析 8
   3.2.3 ABS的主要性能指标 9
 3.3 ABS塑料的注射过程及工艺 10
   3.3.1 注射成型过程 10
   3.3.2 ABS的注射工艺参数 10
   3.3.3 ABS的主要缺陷及消除措施 11
   3.3.4 尺寸精度分析 12
   3.3.5 表面质量分析 12
 3.4 模塑设备的选择 12
 3.5 塑件注射工艺参数的确定 12
 3.6 注射模的结构设计 13
   3.6.1 分型面的选择 13
   3.6.2 确定型腔的排列方式 13
   3.6.3 浇注系统的设计 14
   3.6.4 主流道设计 15
   3.6.5 浇注系统的平衡 16
   3.6.6 推件机构的设计 16
4 模具的有关计算 19
 4.1 型腔和型芯工作尺寸计算 19
 4.2 型腔侧壁厚度和底版厚度计算 21
5 模架的选择 22
6 注射机的校核 24
 6.1 最大注射量的校核 24
 6.2 注射压力的校核 24
 6.3 锁模力的校核 24
 6.4 模具外形尺寸校核 24
 6.5 开模行程的校核 25
7 模具的加工 26
8 结论与展望 28
 8.1 结论 28
 8.2 不足之处与未来展望 28
致  谢 29
参考文献 30


1 绪论
1.1 本课题的研究内容和意义
模具是基础工业的生产技术和设备,发展和振兴我国的模具行业,日益受到人们的关注和重视。模具工业的一个组成部分是属于高新技术产业,重要组成部分是装备工业。在每一个国家的模具被称为“工业(百业)之母”,“重点行业”,“不可估量的电力行业”,“产业发展”的全部秘密,“效益放大器”和一系列的声誉。模具行业的现状是很重要的,而且在国民经济工业机械,石化,汽车,电子,建筑的五大支柱,需要相应的模具行业。在资源节约的当今时代,塑料工业的强大也要求注塑模具的发展紧随其后,所以相关研究也逐步深入并实现实践。注塑模具的研究包含着产品材料、模具设计、模具制造,国内外研究学者投入的心血都转化成海量的文献,对注塑模具的发展有着承前启后的作用。
模具是用来成型物品的工具,这种工具有各种零件构成。不同的模具是通过所成型材料物理状态的改变来实现,模具是由不同的零件所构成的。它主要是通过所成型材料的物理状态改变来实现物品外形的加工。在挤压、模锻、成形冲压、冷镦、冲裁、压力铸造、粉末冶金件压制,以及工程陶瓷、橡胶、塑料等制品的注塑或压塑的成型加工中,用以在外力作用下使坯料成为有特定形状和尺寸的制件的工具。
而注塑模具工业发展始于历史1943年,位于葡萄牙马立尼亚.格兰特市(Marinha Grande)一家小型玻璃模具厂股东阿尼巴尔(AníbalH.Abrantes)萌发了生产注塑模具的构想。由于未能获得其他股东的支持,阿尼巴尔不得不出售自己拥有的公司股份以筹集资金,并开始专注于注塑模具的研发和制造。2年后,他成功地制造了第一只注塑模具。发展至今,注塑模具是生产各种工业或其他产品的重要工艺装备,随着塑胶模具设计工业的迅猛发展以及塑胶制品在汽车、船舶、机械、电子、航太和航空等工业部门的推广应用,所有产品对模具的要求越来越高,传统的塑胶模具设计方法从而已经无法适应产品的提高质量的要求和更新换代。因此快速发展的计算机提供的电脑辅助工程技术已成为产品加工、模具设计及塑胶产品开发中这些明显薄弱环节的最有效的途经。
注射模具,全称为注射成型模具,也就是塑料注射成型所用的模具,它是实现注射成型工艺的重要工艺装备。所谓注塑成型(Injection Molding)是指,受热融化的材料由高压射入模腔,经冷却固化后,得到成形品的方法。该方法适用于形状复杂部件的批量生产,是重要的加工方法之一。注射成型过程大致可分为以下6个阶段“合模-注射-保压-冷却-开模-制品取出”,上述工艺反复进行,就可连续生产出制品。
注射模具的设计,其成型原理是将塑料从注塑机的料斗送进加热的料筒中,经过加热熔化呈流动状态后,在柱塞和螺杆的推动下,熔融塑料被压缩并向前流动,再通过装在料筒前的那个喷嘴以相当快的速度注到温度比较低的闭合模腔里面,熔料充满在型腔在受压的条件下,经过冷却和固化后即可保持模具腔所给予的形状,接着开模后分型获得成型塑件。因此,完成一个循环的生产过程的操作。正常情况,一个模制周期的时间长度范围从几秒钟到几分钟,取决于塑件的形状,大小和厚度、模具的结构、注射机的类型及塑料的品种和成型工艺条件等因素。
注塑模的分类方法很多,按其所用注塑机的类型可分为卧式注塑机用注塑模、立式注塑机用注塑模、角式注塑机用注塑模及双色注塑机用注塑模等;按模具的型腔数目可分为单型腔和多型腔注塑模;按分型面的数量可分为单分型面和双分型面或多分型面注塑模;按浇注系统的形式可分为普通浇注系统和热流道浇注系统注塑模;另外还有气辅注塑模具、蒸汽模具、重叠式模具(叠模)。一般大体分为普通注射模具和特种注射模具,特种注射模具又可分为:滑动型芯式注射模、瓣合式注射模具、螺纹注射模具、滑动型芯与瓣


内容简介:
编号无锡太湖学院毕业设计(论文)相关资料题目: 吹风机外壳的模具设计与加工 信机 系 机械工程及自动化专业学 号: 0923234学生姓名: 冯 亚 指导教师: 王士同 (职称:教授 ) (职称: )2013年5月25日目 录一、毕业设计(论文)开题报告二、毕业设计(论文)外文资料翻译及原文三、学生“毕业论文(论文)计划、进度、检查及落实表”四、实习鉴定表无锡太湖学院毕业设计(论文)开题报告题目: 吹风机外壳的模具设计与加工 信机 系 机械工程及自动化 专业学 号: 0923234 学生姓名: 冯 亚 指导教师: 王士同 (职称:教授 ) (职称: )2012年11月14日 课题来源 自拟题目科学依据(包括课题的科学意义;国内外研究概况、水平和发展趋势;应用前景等)(1)课题科学意义模具工业是国民经济的基础产业,据统计,金属零件粗加工的75%、精加工的50%和塑料零件的90%是用模具加工完成的。被誉为“工业之母”、“皇冠工业”的模具制造业是高技术密集型产业,模具工业已成为先进制造技术的重要组成部分。模具工业的发展水平标志着一个国家工业水平及产品开发能力。注塑模具是在成型中赋予塑料以形状和尺寸的部件。模具的结构虽然由于塑料品种和性能、塑料制品的形状和结构以及注射机的类型等不同而可能千变万化,但是基本结构是一致的。模具主要由浇注系统、成型零件和结构零件三部分组成。其中浇注系统和成型零件是与塑料直接接触部分,并随塑料和制品而变化,是塑模中最复杂,变化最大,要求加工光洁度和精度最高的部分。塑料相对金属,密度小,但强度比较高,绝缘性能优良,具有非常好的抗化学腐蚀性,在机械、化工、汽车、航空航天等领域,塑料已经大规模的取代了金属。目前塑料制件在工业、日常生活各领域几乎无处不在。所以掌握模具设计这一门技巧,对于未来从事相关行业的我们极其重要。在本课题的制做过程中,我们还锻炼使用UG 、AUTOCAD等CAD,CAE绘图软件的技巧。使我们在塑件结构设计、塑料成型工艺分析、塑料模具数字化设计、塑料模具零件的选材、热处理、塑料模具零件的制造,以及资料检索、英文翻译等方面获得综合训练,为未来工作适应期奠定坚实的基础。(2)国内外研究概况改革开放以来,随着国民经济的高速发展,市场对模具的需求量不断增长。近年来,模具工业一直以 15%左右的增长速度快速发展,模具工业企业的所有制成分也发生了巨大变化,除了国有专业模具厂外,集体、合资、独资和私营也得到了快速发展。而模具制造是整个链条中最基础的要素之一,模具制造技术现已成为衡量一个国家制造业水平高低的重要标志,并在很大程度上决定企业的生存空间。随着制造业的发展,模具于20世纪2030年代,特别是美国于20世纪30年代制定了第一部模具零件的标准后,进入产业化生产。模具产业化生产经历了作坊式和工业化生产两个阶段,直至20世纪80年代初计算机工业和数控机床的广泛应用,特别是模具标准化程度与水平的提高,模具生产开始进入现代化生产时代,各工业国家才形成现代模具工业体系。我国随着现代制造业的发展,在学习工业国家建设模具业基础上,经历20多年的努力与进步,与20世纪90年代,在制定完善模具技术标准体系,并实行标准件专业化生产的条件下,创建了20余个群体式模具生产基地,从而形成了模具生产齐全具有近两万个模具生产能力,以及与之相关的企业的模具工业体系。其中,有近20%的模具生产企业,已实现了现代化模具生产方式。但是,国内在模具制造方面仍需继续努力。(3)水平和发展趋势纵观我国模具设计制造,其水平上在总体上要比工业发达国家落后许多,其差距主要表现在下列六方面: (1)国内自配率不足80,中低档模具供过于求,中高档模具自配率不足60。 (2)企业组织结构、产品结构、技术结构和进出口结构都不够合理。 (3)模具产品水平和生产工艺水平总体上比国际先进水平低许多,而模具生产周期却要比国际先进水平长许多。 (4)开发能力弱,经济效益欠佳。我国模具企业技术人员比例较低,水平也较低,不重视产品开发,在市场中常处于被动地位。 (5)模具标准化水平和模具标准件使用覆盖率低。 (6)与国际先进水平相比,模具企业的管理落后更甚于技术落后。未来我国的模具将呈现十大发展趋势:一是模具日趋大型化。二是模具的精度越来越高。三是多功能复合模具将进一步发展。新型多功能复合模具除了冲压成型零件外,还担负叠压、攻丝、铆接和锁紧等组装任务,对钢材的性能要求也越来越高。四、是热流道模具在塑料模具中的比重逐渐提高。五、是随着塑料成型工艺的不断改进与发展,气辅模具及适应高压注射成型等工艺的模具将随之发展。六、是标准件的应用将日渐广泛。七、是快速经济模具的前景十分广阔。八、是随着车辆和电机等产品向轻量化发展,压铸模的比例将不断提高,同时对压铸模的寿命和复杂程度也将提出越来越高的要求。九、是以塑代钢、以塑代木的进程进一步加快,塑料模具的比例将不断增大。十、是模具技术含量将不断提高,中、高档模具比例将不断增大,这也是产品结构调整所导致模具市场走势的变化。研究内容塑件成型工艺分析 分型面及浇注系统的确定 塑料模具设计的方案论证 主要零部件的设计计算 绘制装配图的基本规范 绘制零件图的基本规范 设计计算的说明书的编写。拟采取的研究方法、技术路线、实验方案及可行性分析研究方法:1.利用现有资料对零件了解 2.确定合理的工艺方案 3.设定合理的模具结构 4. 设计要全面介绍模具的工作原理可行性分析:设计概念产生了以后,就有了比较明确的设计方案,但这个设计方案是否可行,还必须从社会文化、技术经济等方面进行各种形式的评估与验证,从而更好地提升设计阶段的工作效果。a,社会文化:社会文化影响着人们的生活方式、价值观念和消费习惯,从而影响到市场需求。产品的价值往往体现在以最低的价格获取最多的功能,与目标用户的价值观念和生活方式相吻合的价格适宜。b,吹风机问卷调查显示对于使用者对电吹风 有什么要求,从这表上,我们知道大多数人对于电吹风的质量是要求比较高,因为在使用的时候,他们认为如果质量好些的话会比较安全,其次就是功能上,电吹风的功能可能主要体现在电吹 风的科技水平上,现在有的电吹风用红外线杀菌,保护头皮等有先进的恶功能,是再是价格上大家都喜欢用物美价廉的东西.对于品牌上,在于品牌的选择还是相对来说还是比较少点,但是品牌也是质量等其它方面的象征,选择品牌的人还是有的,调查中女孩子对于电吹风的外观要求好看些。研究计划及预期成果研究计划:2012年10月12日-2011年12月25日:按照任务书要求查阅论文相关参考资料,填写毕业设计开题报告书。2013年1月11日-2012年3月5日:填写毕业实习报告。2013年3月8日-2012年3月14日:按照要求修改毕业设计开题报告。2013年3月15日-2012年3月21日:学习并翻译一篇与毕业设计相关的英文材料。2013年3月22日-2012年4月11日:模具设计。2013年4月12日-2012年4月25日:模具设计。2013年4月26日-2012年5月21日:毕业论文撰写和修改工作。预期成果:达到预期的设计结果,使吹风机利用设计的模具在厂家拿到图纸的同时就能生产出成品并且设计的吹风机在市场上有一定的前景。特色或者创新之处1、这款吹风机是创新造型设计,不仅仅是对这一普及性产品的重新设计,更赋予了产品新的艺术生命。2、整体造型简洁美观,收纳简便。后带凹槽可整洁地收纳电缆,隐藏式的开关设置在手柄的一端。3、本设计的产品成本低,简单方便易使用,每处细节的都完美的体现出精心设计下的良苦用心。已具备的条件和尚需解决的问题1、产品设计的思路明确.已经具备了绘制UG图形的能力和方法。2、产品零件图样的绘制和工艺标准的确定方面需要加强指导教师意见指导教师签名:王士同 2013年 2月 25日教研室(学科组、研究所)意见 教研室主任签名: 年 月 日系意见 主管领导签名: 年 月 日英文原文CONCURRENT DESIGN OF PLASTICS INJECTION MOULDS Assist.Prof.Dr. A. YAYLA /Prof.Dr. Pa a YAYLAAbstract The plastic product manufacturing industry has been growing rapidly in recent years. One of the most popular processes for making plastic parts is injection moulding. The design of injection mould is critically important to product quality and efficient product processing. Mould-making companies, who wish to maintain the competitive edge, desire to shorten both design and manufacturing leading times of the by applying a systematic mould design process. The mould industry is an important support industry during the product development process, serving as an important link between the product designer and manufacturer. Product development has changed from the traditional serial process of design, followed by manufacture, to a more organized concurrent process where design and manufacture are considered at a very early stage of design. The concept of concurrent engineering (CE) is no longer new and yet it is still applicable and relevant in todays manuf acturing environment. Team working spirit, management involvement, total design process and integration of IT tools are still the essence of CE. The application of The CE process to the design of an injection process involves the simultaneous consideration of plastic part design, mould design and injection moulding machine selection, production scheduling and cost as early as possible in the design stagThis paper presents the basic structure of an injection mould design. The basis of this system arises from an analysis of the injection mould design process for mould design companies. This injection mould design system covers both the mould design process and mould knowledge management. Finally the principle of concurrent engineering process is outlined and then its principle is applied to the design of a plastic injection mould.Keywords :Plastic injection mould design, Concurrent engineering, Computer aided engineering, Moulding conditions, Plastic injection moulding, Flow simulation 1. IntroductioInjection moulds are always expensive to make, unfortunately without a mould it can not be possible ho have a moulded product. Every mould maker has his/her own approach to design a mould and there are many different ways of designing and building a mould. Surely one of the most critical parameters to be considered in the design stage of the mould is the number of cavities, methods of injection, types of runners, methods of gating, methods of ejection, capacity and features of the injection moulding machines. Mould cost, mould quality and cost of mould product are inseparable In todays completive environment, computer aided mould filling simulation packages can accurately predict the fill patterns of any part. This allows for quick simulations of gate placements and helps finding the optimal location. Engineers can perform moulding trials on the computer before the part design is completed. Process engineers can systematically predict a design and process window, and can obtain information about the cumulative effect of the process variables that influence part performance, cost, and appearance. 2. Injection MouldingInjection moulding is one of the most effective ways to bring out the best in plastics. It is universally used to make complex, finished parts, often in a single step, economically, precisely and with little waste. Mass production of plastic parts mostly utilizes moulds. The manufacturing process and involving moulds must be designed after passing through the appearance evaluation and the structure optimization of the product design. Designers face a huge number of options when they create injection-moulded components. Concurrent engineering requires an engineer to consider the manufacturing process of the designed product in the development phase. A good design of the product is unable to go to the market if its manufacturing process is impossible or too expensive. Integration of process simulation, rapid prototyping and manufacturing can reduce the risk associated with moving from CAD to CAM and further enhance the validity of the product development. 3. Importance of Computer Aided Injection Mould Design The injection moulding design task can be highly complex. Computer Aided Engineering (CAE) analysis tools provide enormous advantages of enabling design engineers to consider virtually and part, mould and injection parameters without the real use of any manufacturing and time. The possibility of trying alternative designs or concepts on the computer screen gives the engineers the opportunity to eliminate potential problems before beginning the real production. Moreover, in virtual environment, designers can quickly and easily asses the sensitivity of specific moulding parameters on the quality and manufacturability of the final product. All theseCAE tools enable all these analysis to be completed in a meter of days or even hours, rather than weeks or months needed for the real experimental trial and error cycles. As CAE is used in the early design of part, mould and moulding parameters, the cost savings are substantial not only because of best functioning part and time savings but also the shortens the time needed to launch the product to the market. The need to meet set tolerances of plastic part ties in to all aspects of the moulding process, including part size and shape, resin chemical structure, the fillers used, mould cavity layout, gating, mould cooling and the release mechanisms used. Given this complexity, designers often use computer design tools, such as finite element analysis (FEA) and mould filling analysis (MFA), to reduce development time and cost. FEA determines strain, stress and deflection in a part by dividing the structure into small elements where these parameters can be well defined. MFA evaluates gate position and size to optimize resin flow. It also defines placement of weld lines, areas of excessive stress, and how wall and rib thickness affect flow. Other finite element design tools include mould cooling analysis for temperature distribution, and cycle time and shrinkage analysis for dimensional control and prediction of frozen stress and warpage. The CAE analysis of compression moulded parts is shown in Figure 1. The analysis cycle starts with the creation of a CAD model and a finite element mesh of the mould cavity. After the injection conditions are specified, mould filling, fiber orientation, curing and thermal history, shrinkage and warpage can be simulated. The material properties calculated by the simulation can be used to model the structural behaviour of the part. If required, part design, gate location and processing conditions can be modified in the computer until an acceptable part is obtained. After the analysis is finished an optimized part can be produced with reduced weldline (known also knitline), optimized strength, controlled temperatures and curing, minimized shrinkage and warpage. Machining of the moulds was formerly done manually, with a toolmaker checking each cut. This process became more automated with the growth and widespread use of computer numerically controlled or CNC machining centres. Setup time has also been significantly reduced through the use of special software capable of generating cutter paths directly from a CAD data file. Spindle speeds as high as 100,000 rpm provide further advances in high speed machining. Cutting materials have demonstrated phenomenal performance without the use of any cutting/coolant fluid whatsoever. As a result, the process of machining complex cores and cavities has been accelerated. It is good news that the time it takes to generate a mould is constantly being reduced. The bad news, on the other hand, is that even with all these advances, designing and manufacturing of the mould can still take a long time and can be extremely expensive. Figure 1 CAE analysis of injection moulded parts Many company executives now realize how vital it is to deploy new products to market rapidly. New products are the key to corporate prosperity. They drive corporate revenues, market shares, bottom lines and share prices. A company able to launch good quality products with reasonable prices ahead of their competition not only realizes 100% of the market before rival products arrive but also tends to maintain a dominant position for a few years even after competitive products have finally been announced (Smith, 1991). For most products, these two advantages are dramatic. Rapid product development is now a key aspect of competitive success. Figure 2 shows that only 37% of the product mix from the average industrial or electronics company is less than 5 years old. For companies in the top quartile, the number increases to 1525%. For world-class firms, it is 6080% (Thompson, 1996). The best companies continuously develop new products. At Hewlett-Packard, over 80% of the profits result from products less than 2 years old! (Neel, 1997) Figure 2. Importance of new product (Jacobs, 2000) With the advances in computer technology and artificial intelligence, efforts have been directed to reduce the cost and lead time in the design and manufacture of an injection mould. Injection mould design has been the main area of interest since it is a complex process involving several sub-designs related to various components of the mould, each requiring expert knowledge and experience. Lee et. al. (1997) proposed a systematic methodology and knowledge base for injection mould design in a concurrent engineering environment. 4. Concurrent Engineering in Mould Design Concurrent Engineering (CE) is a systematic approach to integrated product development process. It represents team values of co-operation, trust and sharing in such a manner that decision making is by consensus, involving all per spectives in parallel, from the very beginning of the product life-cycle (Evans, 1998). Essentially, CE provides a collaborative, co-operative, collective and simultaneous engineering working environment. A concurrent engineering approach is based on five key elements: 1. process 2. multidisciplinary team 3. integrated design model 4. facility 5. software infrastructure Figure 3 Methodologies in plastic injection mould design, a) Serial engineering b) Concurrent engineering In the plastics and mould industry, CE is very important due to the high cost tooling and long lead times. Typically, CE is utilized by manufacturing prototype tooling early in the design phase to analyze and adjust the design. Production tooling is manufactured as the final step. The manufacturing process and involving moulds must be designed after passing through the appearance evaluation and the structure optimization of the product design. CE requires an engineer to consider the manufacturing process of the designed product in the development phase. A good design of the product is unable to go to the market if its manufacturing process is impossible. Integration of process simulation and rapid prototyping and manufacturing can reduce the risk associated with moving from CAD to CAM and further enhance the validity of the product developmentFor years, designers have been restricted in what they can produce as they generally have to design for manufacture (DFM) that is, adjust their design intent to enable the component (or assembly) to be manufactured using a particular process or processes. In addition, if a mould is used to produce an item, there are therefore automatically inherent restrictions to the design imposed at the very beginning. Taking injection moulding as an example, in order to process a component successfully, at a minimum, the following design elements need to be taken into account: 1. . geometry; . draft angles, . Non re-entrants shapes, . near constant wall thickness, . complexity, . split line location, and . surface finish, 2. material choice; 3. rationalisation of components (reducing assemblies); 4. cost. In injection moulding, the manufacture of the mould to produce the injection-moulded components is usually the longest part of the product development process. When utilising rapid modelling, the CAD takes the longer time and therefore becomes the bottleneck. The process design and injection moulding of plastics involves rather complicated and time consuming activities including part design, mould design, injection moulding machine selection, production scheduling, tooling and cost estimation. Traditionally all these activities are done by part designers and mould making personnel in a sequential manner after completing injection moulded plastic part design. Obviously these sequential stages could lead to long product development time. However with the implementation of concurrent engineering process in the all parameters effecting product design, mould design, machine selection, production scheduling, tooling and processing cost are considered as early as possible in the design of the plastic part. When used effectively, CAE methods provide enormous cost and time savings for the part design and manufacturing. These tools allow engineers to virtually test how the part will be processed and how it performs during its normal operating life. The material supplier, designer, moulder and manufacturer should apply these tools concurrently early in the design stage of the plastic parts in order to exploit the cost benefit of CAE. CAE makes it possible to replace traditional, sequential decision-making procedures with a concurrent design process, in which all parties can interact and share information, Figure 3. For plastic injection moulding, CAE and related design data provide an integrated environment that facilitates concurrent engineering for the design and manufacture of the part and mould, as well as material selection and simulation of optimal process control parameters. Qualitative expense comparison associated with the part design changes is shown in Figure 4 , showing the fact that when design changes are done at an early stages on the computer screen, the cost associated with is an order of 10.000 times lower than that if the part is in production. These modifications in plastic parts could arise fr om mould modifications, such as gate location, thickness changes, production delays, quality costs, machine setup times, or design change in plastic parts. Figure 4 Cost of design changes during part product development cycle (Rios et.al, 2001)At the early design stage, part designers and moulders have to finalise part design based on their experiences with similar parts. However as the parts become more complex, it gets rather difficult to predict processing and part performance without the use of CAE tools. Thus for even relatively complex parts, the use of CAE tools to prevent the late and expensive design changesand problems that can arise during and after injection. For the successful implementation of concurrent engineering, there must be buy-in from everyone involved. 5.Case Study Figure 5 shows the initial CAD design of plastics part used for the sprinkler irrigation hydrant leg. One of the essential features of the part is that the part has to remain flat after injection; any warping during the injection causes operating problems. Another important feature the plastic part has to have is a high bending stiffness. A number of feeders in different orientation were added to the part as shown in Figure 5b. These feeders should be designed in a way that it has to contribute the weight of the part as minimum as possible. Before the design of the mould, the flow analysis of the plastic part was carried out with Moldflow software to enable the selection of the best gate location Figure 6a. The figure indicates that the best point for the gate location is the middle feeder at the centre of the part. As the distortion and warpage of the part after injection was vital from the functionality point of view and it has to be kept at a minimum level, the same software was also utilised to yiled the warpage analysis. Figure 5 b shows the results implying the fact that the warpage well after injection remains within the predefined dimensional tolerances. 6.Conclusions In the plastic injection moulding, the CAD model of the plastic part obtained from commercial 3D programs could be used for the part performance and injection process analyses. With the aid of CEA technology and the use of concurrent engineering methodology, not only the injection mould can be designed and manufactured in a very short of period of time with a minimised cost but also all potential problems which may arise from part design, mould design and processing parameters could be eliminated at the very beginning of the mould design. These two tools help part designers and mould makers to develop a good product with a better delivery and faster tooling with less time and money. Referenc1.Smith P, Reinertsen D, The time-to-market race, In: Developing Products in Half the Time. New York, Van Nostrand Reinhold, pp. 313, 19912.Thompson J, The total product development organization. Proceedings of the Second AsiaPacific Rapid Product Development Conference, Brisbane, 1996 3.Neel R, Dont stop after the prototype, Seventh International Conference on Rapid Prototyping, San Francisco, 1997 4.Jacobs PF, “Chapter 3: Rapid Product Development” in Rapid Tooling: Technologies and Industrial Applications , Ed. Peter D. Hilton; Paul F. Jacobs, Marcel Decker, 20005.Lee R-S, Chen, Y-M, and Lee, C-Z, “Development of a concurrent mould design system: a knowledge based approach”, Computer Integrated Manufacturing Systems, 10(4), 287-307, 1997 6.Evans B., “Simultaneous Engineering”, Mechanical Engineering , Vol.110, No.2, pp.38-39, 1998 7.Rios A, Gramann, PJ and Davis B, “Computer Aided Engineering in Compression Molding”, Composites Fabricators Association Annual Conference , Tampa Bay, 2001 中文译文塑料注射模具的并行设计摘要 塑料产品制造业已在近几年迅速增长。用于制造塑料部件的最流行的过程之一是注塑。注塑模具的设计是非常重要的产品质量和高效的产品加工。 模具制造公司,谁愿意以保持竞争优势,缩短应用系统的模具设计过程中,设计和制造领先时代的欲望。模具行业在产品开发过程中的重要支撑产业,作为产品的设计者和制造商之间的一个重要环节。从产品的发展,改变了传统的串行设计过程中,其次是制造,一个更有组织的并发设计和制造过程中被认为是在一个非常早期的设计阶段。并行工程(CE)的概念已不再是新鲜事,但它仍然是适用的,在今天的化学品制造acturing环境相关。团队合作精神,管理人员的参与,整个设计过程和集成的IT工具仍然是CE的本质。同时考虑应用的CE程序设计的一个注入进程涉及的塑料零件设计,模具设计和注塑机选择,生产调度和成本尽早在设计雄鹿 本文介绍了注塑模具设计的基本结构。这个系统的基础上产生的注塑模具设计过程的分析,模具设计公司。注塑模具设计系统涵盖了模具设计工艺和模具知识管理。最后的原则的并发工程过程的概述,然后被施加到其原理的塑料注射模具的设计。关键词:注塑模具的设计,并行工程,计算机辅助工程,成型条件,注塑成型,流程模拟1.导论 注塑模具往往成本很大,不幸的是没有的模具,它不能是可能浩有一个模制产品。每一个模具制造商都有他/她自己的方式来设计模具,模具的设计和建设一个有许多不同的方式。当然,模具的设计阶段,要考虑的最重要的参数之一是空腔,注射方法,跑步者的类型的,选通的方法,喷射,容量和特性的注塑机的方法的数量。模具成本,模具的模具产品的质量和成本是分不开的。 在今天的环境,计算机辅助模具填充仿真工具包,可以准确地预测任何部分的填充图案。这可以快速模拟的门安置,并帮助找到最佳的位置。以前的部分设计完成后,工程师可以在电脑上进行成型试验。工艺工程师可以系统地预测设计和工艺窗口,可以获取信息的过程变量影响性能,成本和外观的累积效应。2.注塑成型 注塑成型是最好的塑料带出最有效的方法之一。这是普遍使用的,往往是在一个单一的步骤,使复杂,成品零件经济,精确和废物少。大规模生产的塑料部件大多采用的模具。后通过的外观评价及结构优化的产品设计,制造过程中,涉及模具的设计必须。设计人员面临的注塑成型部件的选择,当他们创建一个庞大的数字。并行工程要求工程师在开发阶段考虑制造过程的设计的产品。一个好的设计的产品是不能去的市场,如果其生产过程中是不可能的,或过于昂贵。与从CAD到CAM过程的仿真,快速原型制造的集成可以降低风险,进一步提升产品开发的有效性。3.计算机辅助注塑模具设计的重要性 注塑模具设计任务可以是非常复杂的。计算机辅助工程(CAE)分析工具使设计工程师提供了巨大的优势,几乎和零件,模具及注塑参数没有真正的使用任何制造和时间的考虑。尝试另一种设计或概念在计算机屏幕上的可能性给出了工程师的机会,以消除潜在的问题,然后再开始真正的生产。此外,在虚拟环境中,设计人员可以快速,方便地评估特定的成型参数对最终产品的质量和可制造性的灵敏度。所有theseCAE工具,使所有这些分析,在一米的几天甚至几个小时内完成,而不是几周或几个月需要对实际的试验和错误周期。由于采用的是早期设计的零件,模具和成型工艺参数CAE不仅是因为最佳的功能的一部分,节省时间,也缩短了所需的时间向市场推出的产品,节约成本是巨大的。 需要设定的公差,以满足的塑料部分关系到成型过程中的各个方面,包括零件的尺寸和形状,树脂的化学结构,使用的填料,模腔布局,浇注,模具冷却和释放机制。鉴于这种复杂性,设计人员经常使用电脑的设计工具,如有限元分析(FEA)和模流分析(MFA),以减少开发时间和成本。有限元分析确定应变,应力和偏转通过划分成小的元素,这些参数可以很好地定义的结构的一部分中。 MFA评估浇口位置和大小以优化树脂流动。它还定义的焊接线,过度紧张的地区,壁和肋骨厚度如何影响流量的位置。其他有限元设计工具,包括模具的冷却温度分布,分析和三维控制和预测分析的冻结应力和翘曲的周期时间和收缩。图1中所示的压缩模制零件的CAE分析。分析周期开始与创建的CAD模型和有限元网格的模腔。注射后的条件规定,可以模拟模具填充,纤维取向,固化和热历史,收缩和翘曲。通过模拟计算出的材料性能,可以使用的部分的结构的行为进行建模。如果需要的话,部件设计,浇口位置和加工条件可以在计算机中进行修改,直到获得一个可以接受的部分。分析完成后,就可以生产出一个优化的部分减少熔合线(又称knitline),优化的强度,控制温度和固化,最小化收缩和翘曲。模具加工的前身是手工完成,检查每个切与工具制造商。这个过程变得更加自动化的发展和广泛使用的计算机数控CNC加工中心。安装时间也显着减少了通过使用特殊的软件,能够直接从CAD数据文件生成的刀具路径。高达10万转的主轴转速提供高速加工的进一步发展。切削材料表现出惊人的性能,而无需使用任何任何切割/冷却流体。其结果是,已加速加工复杂的过程中,芯和模腔。 不断地被降低,所花费的时间,以生成的
温馨提示:
1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
2: 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
3.本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
提示  人人文库网所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
关于本文
本文标题:吹风机外壳的模具设计与加工[三维UG]【13张CAD图纸+WORD毕业论文】【注塑模具类】
链接地址:https://www.renrendoc.com/p-408789.html

官方联系方式

2:不支持迅雷下载,请使用浏览器下载   
3:不支持QQ浏览器下载,请用其他浏览器   
4:下载后的文档和图纸-无水印   
5:文档经过压缩,下载后原文更清晰   
关于我们 - 网站声明 - 网站地图 - 资源地图 - 友情链接 - 网站客服 - 联系我们

网站客服QQ:2881952447     

copyright@ 2020-2025  renrendoc.com 人人文库版权所有   联系电话:400-852-1180

备案号:蜀ICP备2022000484号-2       经营许可证: 川B2-20220663       公网安备川公网安备: 51019002004831号

本站为文档C2C交易模式,即用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知人人文库网,我们立即给予删除!