九年级寒假压轴专题训练教师讲义.doc_第1页
九年级寒假压轴专题训练教师讲义.doc_第2页
九年级寒假压轴专题训练教师讲义.doc_第3页
九年级寒假压轴专题训练教师讲义.doc_第4页
九年级寒假压轴专题训练教师讲义.doc_第5页
已阅读5页,还剩28页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

学习热线:83218005 目 录第一部分 函数图象中点的存在性问题1.1 因动点产生的相似三角形问题 例1 2012年苏州市中考第29题 例2 2012年黄冈市中考第25题1.2 因动点产生的等腰三角形问题 例1 2012年扬州市中考第27题 例2 2012年临沂市中考第26题1.3 因动点产生的直角三角形问题 例1 2012年广州市中考第24题 例2 2012年杭州市中考第22题1.4 因动点产生的平行四边形问题 例1 2012年福州市中考第21题 例2 2012年烟台市中考第26题1.5 因动点产生的梯形问题 例1 2012年上海市松江中考模拟第24题 例2 2012年衢州市中考第24题 1.6 因动点产生的面积问题 例1 2012年菏泽市中考第21题 例2 2012年河南省中考第23题1.7因动点产生的相切问题 例1 2012年河北省中考第25题 例2 2012年无锡市中考第28题1.8因动点产生的线段和差问题 例1 2012年滨州市中考第24题 例2 2012年山西省中考第26题第二部分 图形运动中的函数关系问题2.1 由比例线段产生的函数关系问题例1 2012年上海市徐汇区中考模拟第25题例2 2012年连云港市中考第26题2.2 由面积公式产生的函数关系问题例1 2012年广东省中考第22题 例2 2012年河北省中考第26题 第一部分 函数图象中点的存在性问题1.1 因动点产生的相似三角形问题 例1 2012年苏州市中考第29题如图1,已知抛物线(b是实数且b2)与x轴的正半轴分别交于点A、B(点A位于点B是左侧),与y轴的正半轴交于点C(1)点B的坐标为_,点C的坐标为_(用含b的代数式表示);(2)请你探索在第一象限内是否存在点P,使得四边形PCOB的面积等于2b,且PBC是以点P为直角顶 点的等腰直角三角形?如果存在,求出点P的坐标;如果不存在,请说明理由;(3) 请你进一步探索在第一象限内是否存在点Q,使得QCO、QOA和QAB中的任意两个三角形均相 似(全等可看作相似的特殊情况)?如果存在,求出点Q的坐标;如果不存在,请说明理由 图1思路点拨1第(2)题中,等腰直角三角形PBC暗示了点P到两坐标轴的距离相等2联结OP,把四边形PCOB重新分割为两个等高的三角形,底边可以用含b的式子表示3第(3)题要探究三个三角形两两相似,第一直觉这三个三角形是直角三角形,点Q最大的可能在经过点A与x轴垂直的直线上满分解答(1)B的坐标为(b, 0),点C的坐标为(0, )(2)如图2,过点P作PDx轴,PEy轴,垂足分别为D、E,那么PDBPEC因此PDPE设点P的坐标为(x, x)如图3,联结OP所以S四边形PCOBSPCOSPBO2b解得所以点P的坐标为()图2 图3(3)由,得A(1, 0),OA1如图4,以OA、OC为邻边构造矩形OAQC,那么OQCQOA当,即时,BQAQOA所以解得所以符合题意的点Q为()如图5,以OC为直径的圆与直线x1交于点Q,那么OQC90。因此OCQQOA当时,BQAQOA此时OQB90所以C、Q、B三点共线因此,即解得此时Q(1,4)图4 图5考点伸展第(3)题的思路是,A、C、O三点是确定的,B是x轴正半轴上待定的点,而QOA与QOC是互余的,那么我们自然想到三个三角形都是直角三角形的情况这样,先根据QOA与QOC相似把点Q的位置确定下来,再根据两直角边对应成比例确定点B的位置如图中,圆与直线x1的另一个交点会不会是符合题意的点Q呢?如果符合题意的话,那么点B的位置距离点A很近,这与OB4OC矛盾例2 2012年黄冈市中考模拟第25题如图1,已知抛物线的方程C1: (m0)与x轴交于点B、C,与y轴交于点E,且点B在点C的左侧(1)若抛物线C1过点M(2, 2),求实数m的值;(2)在(1)的条件下,求BCE的面积;(3)在(1)的条件下,在抛物线的对称轴上找一点H,使得BHEH最小,求出点H的坐标;(4)在第四象限内,抛物线C1上是否存在点F,使得以点B、C、F为顶点的三角形与BCE相似?若存在, 求m的值;若不存在,请说明理由 图1思路点拨1第(3)题是典型的“牛喝水”问题,当H落在线段EC上时,BHEH最小2第(4)题的解题策略是:先分两种情况画直线BF,作CBFEBC45,或者作BF/EC再用含m 的式子表示点F的坐标然后根据夹角相等,两边对应成比例列关于m的方程满分解答(1)将M(2, 2)代入,得解得m4(2)当m4时,所以C(4, 0),E(0, 2)所以SBCE(3)如图2,抛物线的对称轴是直线x1,当H落在线段EC上时,BHEH最小设对称轴与x轴的交点为P,那么因此解得所以点H的坐标为(4)如图3,过点B作EC的平行线交抛物线于F,过点F作FFx轴于F由于BCEFBC,所以当,即时,BCEFBC设点F的坐标为,由,得解得xm2所以F(m2, 0)由,得所以由,得整理,得016此方程无解图2 图3 图4如图4,作CBF45交抛物线于F,过点F作FFx轴于F,由于EBCCBF,所以,即时,BCEBFC在RtBFF中,由FFBF,得解得x2m所以F所以BF2m2,由,得解得综合、,符合题意的m为考点伸展第(4)题也可以这样求BF的长:在求得点F、F的坐标后,根据两点间的距离公式求BF的长1.2 因动点产生的等腰三角形问题例1 2012年扬州市中考第27题如图1,抛物线yax2bxc经过A(1,0)、B(3, 0)、C(0 ,3)三点,直线l是抛物线的对称轴(1)求抛物线的函数关系式;(2)设点P是直线l上的一个动点,当PAC的周长最小时,求点P的坐标;(3)在直线l上是否存在点M,使MAC为等腰三角形,若存在,直接写出所有符合条件的点M的坐标; 若不存在,请说明理由 图1 思路点拨1第(2)题是典型的“牛喝水”问题,点P在线段BC上时PAC的周长最小2第(3)题分三种情况列方程讨论等腰三角形的存在性满分解答(1)因为抛物线与x轴交于A(1,0)、B(3, 0)两点,设ya(x1)(x3),代入点C(0 ,3),得3a3解得a1所以抛物线的函数关系式是y(x1)(x3)x22x3(2)如图2,抛物线的对称轴是直线x1当点P落在线段BC上时,PAPC最小,PAC的周长最小设抛物线的对称轴与x轴的交点为H由,BOCO,得PHBH2所以点P的坐标为(1, 2)图2(3)点M的坐标为(1, 1)、(1,)、(1,)或(1,0)考点伸展第(3)题的解题过程是这样的:设点M的坐标为(1,m)在MAC中,AC210,MC21(m3)2,MA24m2如图3,当MAMC时,MA2MC2解方程4m21(m3)2,得m1此时点M的坐标为(1, 1)如图4,当AMAC时,AM2AC2解方程4m210,得此时点M的坐标为(1,)或(1,)如图5,当CMCA时,CM2CA2解方程1(m3)210,得m0或6当M(1, 6)时,M、A、C三点共线,所以此时符合条件的点M的坐标为(1,0)图3 图4 图5例2 2012年临沂市中考第26题如图1,点A在x轴上,OA4,将线段OA绕点O顺时针旋转120至OB的位置(1)求点B的坐标;(2)求经过A、O、B的抛物线的解析式;(3)在此抛物线的对称轴上,是否存在点P,使得以点P、O、B为顶点的三角形是等腰三角形?若存在, 求点P的坐标;若不存在,请说明理由 图1思路点拨1用代数法探求等腰三角形分三步:先分类,按腰相等分三种情况;再根据两点间的距离公式列方程;然后解方程并检验2本题中等腰三角形的角度特殊,三种情况的点P重合在一起满分解答(1)如图2,过点B作BCy轴,垂足为C在RtOBC中,BOC30,OB4,所以BC2,所以点B的坐标为(2)因为抛物线与x轴交于O、A(4, 0),设抛物线的解析式为yax(x4),代入点B,解得所以抛物线的解析式为(3)抛物线的对称轴是直线x2,设点P的坐标为(2, y)当OPOB4时,OP216所以4+y216解得当P在时,B、O、P三点共线(如图2)当BPBO4时,BP216所以解得当PBPO时,PB2PO2所以解得综合、,点P的坐标为,如图2所示图2 图3考点伸展如图3,在本题中,设抛物线的顶点为D,那么DOA与OAB是两个相似的等腰三角形由,得抛物线的顶点为因此所以DOA30,ODA1201.3 因动点产生的直角三角形问题例1 2012年广州市中考第24题如图1,抛物线与x轴交于A、B两点(点A在点B的左侧),与y轴交于点C(1)求点A、B的坐标;(2)设D为已知抛物线的对称轴上的任意一点,当ACD的面积等于ACB的面积时,求点D的坐标;(3)若直线l过点E(4, 0),M为直线l上的动点,当以A、B、M为顶点所作的直角三角形有且只有三个时, 求直线l的解析式 图1 思路点拨1根据同底等高的三角形面积相等,平行线间的距离处处相等,可以知道符合条件的点D有两个2当直线l与以AB为直径的圆相交时,符合AMB90的点M有2个;当直线l与圆相切时,符合AMB90的点M只有1个3灵活应用相似比解题比较简便满分解答(1)由,得抛物线与x轴的交点坐标为A(4, 0)、B(2, 0)对称轴是直线x1(2)ACD与ACB有公共的底边AC,当ACD的面积等于ACB的面积时,点B、D到直线AC的距离相等过点B作AC的平行线交抛物线的对称轴于点D,在AC的另一侧有对应的点D设抛物线的对称轴与x轴的交点为G,与AC交于点H由BD/AC,得DBGCAO所以所以,点D的坐标为因为AC/BD,AGBG,所以HGDG而DHDH,所以DG3DG所以D的坐标为图2 图3(3)过点A、B分别作x轴的垂线,这两条垂线与直线l总是有交点的,即2个点M以AB为直径的G如果与直线l相交,那么就有2个点M;如果圆与直线l相切,就只有1个点M了联结GM,那么GMl在RtEGM中,GM3,GE5,所以EM4在RtEM1A中,AE8,所以M1A6所以点M1的坐标为(4, 6),过M1、E的直线l为根据对称性,直线l还可以是考点伸展第(3)题中的直线l恰好经过点C,因此可以过点C、E求直线l的解析式在RtEGM中,GM3,GE5,所以EM4在RtECO中,CO3,EO4,所以CE5因此三角形EGMECO,GEMCEO所以直线CM过点C例2 2012年杭州市中考第22题在平面直角坐标系中,反比例函数与二次函数yk(x2x1)的图象交于点A(1,k)和点B(1,k)(1)当k2时,求反比例函数的解析式;(2)要使反比例函数与二次函数都是y随x增大而增大,求k应满足的条件以及x的取值范围;(3)设二次函数的图象的顶点为Q,当ABQ是以AB为斜边的直角三角形时,求k的值 图1思路点拨1由点A(1,k)或点B(1,k)的坐标可以知道,反比例函数的解析式就是题目中的k都是一致的2由点A(1,k)或点B(1,k)的坐标还可以知道,A、B关于原点O对称,以AB为直径的圆的圆心就是O3根据直径所对的圆周角是直角,当Q落在O上是,ABQ是以AB为直径的直角三角形满分解答(1)因为反比例函数的图象过点A(1,k),所以反比例函数的解析式是当k2时,反比例函数的解析式是(2)在反比例函数中,如果y随x增大而增大,那么k0当k0时,抛物线的开口向下,在对称轴左侧,y随x增大而增大抛物线yk(x2x1)的对称轴是直线 所以当k0且时,反比例函数与二次函数都是y随x增大而增大(3)抛物线的顶点Q的坐标是,A、B关于原点O中心对称,当OQOAOB时,ABQ是以AB为直径的直角三角形由OQ2OA2,得解得(如图2),(如图3)图2 图3考点伸展如图4,已知经过原点O的两条直线AB与CD分别与双曲线(k0)交于A、B和C、D,那么AB与CD互相平分,所以四边形ACBD是平行四边形问平行四边形ABCD能否成为矩形?能否成为正方形?如图5,当A、C关于直线yx对称时,AB与CD互相平分且相等,四边形ABCD是矩形因为A、C可以无限接近坐标系但是不能落在坐标轴上,所以OA与OC无法垂直,因此四边形ABCD不能成为正方形图4 图51.4 因动点产生的平行四边形问题例 1 2012年福州市中考第21题如图1,在RtABC中,C90,AC6,BC8,动点P从点A开始沿边AC向点C以每秒1个单位长度的速度运动,动点Q从点C开始沿边CB向点B以每秒2个单位长度的速度运动,过点P作PD/BC,交AB于点D,联结PQ点P、Q分别从点A、C同时出发,当其中一点到达端点时,另一点也随之停止运动,设运动的时间为t秒(t0)(1)直接用含t的代数式分别表示:QB_,PD_;(2)是否存在t的值,使四边形PDBQ为菱形?若存在,求出t的值;若不存在,说明理由,并探究如何改 变点Q的速度(匀速运动),使四边形PDBQ在某一时刻为菱形,求点Q的速度;(3)如图2,在整个运动过程中,求出线段PQ的中点M所经过的路径长图1 图2思路点拨1菱形PDBQ必须符合两个条件,点P在ABC的平分线上,PQ/AB先求出点P运动的时间t,再根据PQ/AB,对应线段成比例求CQ的长,从而求出点Q的速度2探究点M的路径,可以先取两个极端值画线段,再验证这条线段是不是点M的路径满分解答(1)QB82t,PD(2)如图3,作ABC的平分线交CA于P,过点P作PQ/AB交BC于Q,那么四边形PDBQ是菱形过点P作PEAB,垂足为E,那么BEBC8在RtABC中,AC6,BC8,所以AB10 图3在RtAPE中,所以当PQ/AB时,即解得所以点Q的运动速度为(3)以C为原点建立直角坐标系如图4,当t0时,PQ的中点就是AC的中点E(3,0)如图5,当t4时,PQ的中点就是PB的中点F(1,4)直线EF的解析式是y2x6如图6,PQ的中点M的坐标可以表示为(,t)经验证,点M(,t)在直线EF上所以PQ的中点M的运动路径长就是线段EF的长,EF图4 图5 图6考点伸展第(3)题求点M的运动路径还有一种通用的方法是设二次函数:当t2时,PQ的中点为(2,2)设点M的运动路径的解析式为yax2bxc,代入E(3,0)、F(1,4)和(2,2),得 解得a0,b2,c6所以点M的运动路径的解析式为y2x6例 2 2012年烟台市中考第26题如图1,在平面直角坐标系中,已知矩形ABCD的三个顶点B(1, 0)、C(3, 0)、D(3, 4)以A为顶点的抛物线yax2bxc过点C动点P从点A出发,沿线段AB向点B运动,同时动点Q从点C出发,沿线段CD向点D运动点P、Q的运动速度均为每秒1个单位,运动时间为t秒过点P作PEAB交AC于点E(1)直接写出点A的坐标,并求出抛物线的解析式;(2)过点E作EFAD于F,交抛物线于点G,当t为何值时,ACG的面积最大?最大值为多少?(3)在动点P、Q运动的过程中,当t为何值时,在矩形ABCD内(包括边界)存在点H,使以C、Q、E、 H为顶点的四边形为菱形?请直接写出t的值 图1思路点拨1把ACG分割成以GE为公共底边的两个三角形,高的和等于AD2用含有t的式子把图形中能够表示的线段和点的坐标都表示出来3构造以C、Q、E、H为顶点的平行四边形,再用邻边相等列方程验证菱形是否存在满分解答(1)A(1, 4)因为抛物线的顶点为A,设抛物线的解析式为ya(x1)24,代入点C(3, 0),可得a1所以抛物线的解析式为y(x1)24x22x3(2)因为PE/BC,所以因此所以点E的横坐标为将代入抛物线的解析式,y(x1)24所以点G的纵坐标为于是得到因此所以当t1时,ACG面积的最大值为1(3)或考点伸展第(3)题的解题思路是这样的:因为FE/QC,FEQC,所以四边形FECQ是平行四边形再构造点F关于PE轴对称的点H,那么四边形EHCQ也是平行四边形再根据FQCQ列关于t的方程,检验四边形FECQ是否为菱形,根据EQCQ列关于t的方程,检验四边形EHCQ是否为菱形,如图2,当FQCQ时,FQ2CQ2,因此整理,得解得,(舍去)如图3,当EQCQ时,EQ2CQ2,因此整理,得所以,(舍去)图2 图31.5 因动点产生的梯形问题例1 2012年上海市松江区中考模拟第24题已知直线y3x3分别与x轴、y轴交于点A,B,抛物线yax22xc经过点A,B(1)求该抛物线的表达式,并写出该抛物线的对称轴和顶点坐标;(2)记该抛物线的对称轴为直线l,点B关于直线l的对称点为C,若点D在y轴的正半轴上,且四边形ABCD为梯形 求点D的坐标; 将此抛物线向右平移,平移后抛物线的顶点为P,其对称轴与直线y3x3交于点E,若, 求四边形BDEP的面积图1 思路点拨1这道题的最大障碍是画图,A、B、C、D四个点必须画准确,其实抛物线不必画出,画出对称轴就可以了2抛物线向右平移,不变的是顶点的纵坐标,不变的是D、P两点间的垂直距离等于73已知DPE的正切值中的7的几何意义就是D、P两点间的垂直距离等于7,那么点P向右平移到直线x3时,就停止平移满分解答(1)直线y3x3与x轴的交点为A(1,0),与y轴的交点为B(0,3)将A(1,0)、B(0,3)分别代入yax22xc,得 解得 所以抛物线的表达式为yx22x3对称轴为直线x1,顶点为(1,4)(2)如图2,点B关于直线l的对称点C的坐标为(2,3)因为CD/AB,设直线CD的解析式为y3xb,代入点C(2,3),可得b3所以点D的坐标为(0,3)过点P作PHy轴,垂足为H,那么PDHDPE由,得而DH7,所以PH3因此点E的坐标为(3,6)所以图2 图3考点伸展第(2)用几何法求点D的坐标更简便:因为CD/AB,所以CDBABO因此所以BD3BC6,OD3因此D(0,3)例2 2012年衢州市中考第24题如图1,把两个全等的RtAOB和RtCOD方别置于平面直角坐标系中,使直角边OB、OD在x轴上已知点A(1,2),过A、C两点的直线分别交x轴、y轴于点E、F抛物线yax2bxc经过O、A、C三点(1)求该抛物线的函数解析式;(2)点P为线段OC上的一个动点,过点P作y轴的平行线交抛物线于点M,交x轴于点N,问是否存在这 样的点P,使得四边形ABPM为等腰梯形?若存在,求出此时点P的坐标;若不存在,请说明理由;(3)若AOB沿AC方向平移(点A始终在线段AC上,且不与点C重合),AOB在平移的过程中与COD 重叠部分的面积记为S试探究S是否存在最大值?若存在,求出这个最大值;若不存在,请说明理由 图1 思路点拨1如果四边形ABPM是等腰梯形,那么AB为较长的底边,这个等腰梯形可以分割为一个矩形和两个全等的直角三角形,AB边分成的3小段,两侧的线段长线段2AOB与COD重叠部分的形状是四边形EFGH,可以通过割补得到,即OFG减去OEH3求OEH的面积时,如果构造底边OH上的高EK,那么RtEHK的直角边的比为124设点A移动的水平距离为m,那么所有的直角三角形的直角边都可以用m表示满分解答(1)将A(1,2)、O(0,0)、C(2,1)分别代入yax2bxc,得 解得, 所以(2)如图2,过点P、M分别作梯形ABPM的高PP、MM,如果梯形ABPM是等腰梯形,那么AMBP,因此yAy MyPyB直线OC的解析式为,设点P的坐标为,那么解方程,得,x2的几何意义是P与C重合,此时梯形不存在所以图2 图3(3)如图3,AOB与COD重叠部分的形状是四边形EFGH,作EKOD于K设点A移动的水平距离为m,那么OG1m,GBm在RtOFG中,所以在RtAHG中,AG2m,所以所以在RtOEK中,OK2 EK;在RtEHK中,EK2HK;所以OK4HK因此所以所以于是因为0m1,所以当时,S取得最大值,最大值为考点伸展第(3)题也可以这样来解:设点A的横坐标为a由直线AC:yx3,可得A(a, a3)由直线OC:,可得由直线OA:y2x及A(a, a3),可得直线OA:y2x3a3,由直线OC和直线OA可求得交点E(2a2,a1)由E、F、G、H 4个点的坐标,可得1.6 因动点产生的面积问题例 1 2012年菏泽市中考第21题如图1,在平面直角坐标系中放置一直角三角板,其顶点为A(0, 1)、B(2, 0)、O(0, 0),将此三角板绕原点O逆时针旋转90,得到三角形ABO(1)一抛物线经过点A、B、B,求该抛物线的解析式;(2)设点P是第一象限内抛物线上的一个动点,是否存在点P,使四边形PBAB的面积是ABO面积的4 倍?若存在,请求出点P的坐标;若不存在,请说明理由;(3)在(2)的条件下,试指出四边形PBAB是哪种形状的四边形?并写出它的两条性质 图1思路点拨1四边形PBAB的面积是ABO面积的4倍,可以转化为四边形PBOB的面积是ABO面积的3倍2联结PO,四边形PBOB可以分割为两个三角形3过点向x轴作垂线,四边形PBOB也可以分割为一个直角梯形和一个直角三角形满分解答(1)AOB绕着原点O逆时针旋转90,点A、B的坐标分别为(1, 0) 、(0, 2)因为抛物线与x轴交于A(1, 0)、B(2, 0),设解析式为ya(x1)(x2),代入B(0, 2),得a1所以该抛物线的解析式为y(x1)(x2) x2x2(2)SABO1如果S四边形PBAB4 SABO4,那么S四边形PBOB3 SABO3如图2,作PDOB,垂足为D设点P的坐标为 (x,x2x2)所以解方程x22x23,得x1x21所以点P的坐标为(1,2)图2 图3 图4(3)如图3,四边形PBAB是等腰梯形,它的性质有:等腰梯形的对角线相等;等腰梯形同以底上的两个内角相等;等腰梯形是轴对称图形,对称轴是经过两底中点的直线考点伸展第(2)题求四边形PBOB的面积,也可以如图4那样分割图形,这样运算过程更简单所以甚至我们可以更大胆地根据抛物线的对称性直接得到点P:作AOB关于抛物线的对称轴对称的BOE,那么点E的坐标为(1,2)而矩形EBOD与AOB、BOP是等底等高的,所以四边形EBAB的面积是ABO面积的4倍因此点E就是要探求的点P例 2 2012年河南省中考第23题如图1,在平面直角坐标系中,直线与抛物线yax2bx3交于A、B两点,点A在x轴上,点B的纵坐标为3点P是直线AB下方的抛物线上的一动点(不与点A、B重合),过点P作x轴的垂线交直线AB于点C,作PDAB于点D(1) 求a、b及sinACP的值;(2)设点P的横坐标为m 用含m的代数式表示线段PD的长,并求出线段PD长的最大值; 连结PB,线段PC把PDB分成两个三角形,是否存在适合的m的值,使这两个三角形的面积比为 910?若存在,直接写出m的值;若不存在,请说明理由 图1思路点拨1第(1)题由于CP/y轴,把ACP转化为它的同位角2第(2)题中,PDPCsinACP,第(1)题已经做好了铺垫3PCD与PCB是同底边PC的两个三角形,面积比等于对应高DN与BM的比4两个三角形的面积比为910,要分两种情况讨论满分解答(1)设直线与y轴交于点E,那么A(2,0),B(4,3),E(0,1)在RtAEO中,OA2,OE1,所以所以因为PC/EO,所以ACPAEO因此将A(2,0)、B(4,3)分别代入yax2bx3,得解得,(2)由,得所以所以PD的最大值为(3)当SPCDSPCB910时,;当SPCDSPCB109时,图2考点伸展第(3)题的思路是:PCD与PCB是同底边PC的两个三角形,面积比等于对应高DN与BM的比而,BM4m当SPCDSPCB910时,解得当SPCDSPCB109时,解得1.7 因动点产生的相切问题 例1 2012年河北省中考第25题如图1,A(5,0),B(3,0),点C在y轴的正半轴上,CBO45,CD/AB,CDA90点P从点Q(4,0)出发,沿x轴向左以每秒1个单位长的速度运动,运动时间为t秒(1)求点C的坐标;(2)当BCP15时,求t的值;(3)以点P为圆心,PC为半径的P随点P的运动而变化,当P与四边形ABCD的边(或边所在的直线) 相切时,求t的值 图1答案 (1)点C的坐标为(0,3)(2)如图2,当P在B的右侧,BCP15时,PCO30,;如图3,当P在B的左侧,BCP15时,CPO30,图2 图3(3)如图4,当P与直线BC相切时,t1;如图5,当P与直线DC相切时,t4;如图6,当P与直线AD相切时,t5.6图4 图5 图6例2 2012年无锡市中考模拟第28题如图1,菱形ABCD的边长为2厘米,DAB60点P从A出发,以每秒厘米的速度沿AC向C作匀速运动;与此同时,点Q也从点A出发,以每秒1厘米的速度沿射线作匀速运动当点P到达点C时,P、Q都停止运动设点P运动的时间为t秒(1)当P异于A、C时,请说明PQ/BC;(2)以P为圆心、PQ长为半径作圆,请问:在整个运动过程中,t为怎样的值时,P与边BC分别有1个公共点和2个公共点? 图一 答案 (1)因为,所以因此PQ/BC(2)如图2,由PQPH,得解得如图3,由PQPB,得等边三角形PBQ所以Q是AB的中点,t1如图4,由PQPC,得解得如图5,当P、C重合时,t2因此,当或1t或t2时,P与边BC有1个公共点当t1时,P与边BC有2个公共点图2 图3 图4 图51.8 因动点产生的线段和差问题 例1 2012年滨州市中考第24题如图1,在平面直角坐标系中,抛物线yax2bxc经过A(2, 4 )、O(0, 0)、B(2, 0)三点(1)求抛物线yax2bxc的解析式;(2)若点M是该抛物线对称轴上的一点,求AMOM的最小值 图1答案 (1)。 (2)AMOM的最小值为图2 图3例2 2012年山西省中考第26题如图1,在平面直角坐标系中,抛物线yx22x3与x轴交于A、B两点,与y轴交于点C,点D是抛物线的顶点(1)求直线AC的解析式及B、D两点的坐标;(2)点P是x轴上的一个动点,过P作直线l/AC交抛物线于点Q试探究:随着点P的运动,在抛物线上 是否存在点Q,使以A、P、Q、C为顶点的四边形是平行四边形?若存在,请直接写出符合条件的点Q 的坐标;若不存在,请说明理由;(3)请在直线AC上找一点M,使BDM的周长最小,求出点M的坐标 图1思路点拨1第(2)题探究平行四边形,按照AP为边或者对角线分两种情况讨论2第(3)题是典型的“牛喝水”问题,构造点B关于“河流”AC的对称点B,那么M落在BD上时, MBMD最小,MBD的周长最小满分解答(1)由yx22x3(x1)(x3)(x1)24,得A(1, 0)、B(3, 0)、C(0, 3)、D(1, 4)直线AC的解析式是y3x3(2)Q1(2, 3),Q2(),Q3()(3)设点B关于直线AC的对称点为B,联结BB交AC于F联结BD,BD与交AC的交点就是要探求的点M作BEx轴于E,那么BBEBAFCAO在RtBAF中,AB4,所以在RtBBE中,所以,所以所以点B的坐标为因为点M在直线y3x3上,设点M的坐标为(x, 3x3)由,得所以解得所以点M的坐标为图2 图3考点伸展第(2)题的解题思路是这样的:如图4,当AP是平行四边形的边时,CQ/AP,所以点C、Q关于抛物线的对称轴对称,点Q的坐标为(2, 3)如图5,当AP是平行四边形的对角线时,点C、Q分居x轴两侧,C、Q到x轴的距离相等解方程x22x33,得所以点Q的坐标为()或 ()图4 图5 第二部分 函数图象中点的存在性问题2.1 由比例线段产生的函数关系问题 例1 2012年上海市徐汇区中考模拟第25题在RtABC中,C90,AC6,B的半径长为1,B交边CB于点P,点O是边AB上的动点(1)如图1,将B绕点P旋转180得到M,请判断M与直线AB的位置关系;(2)如图2,在(1)的条件下,当OMP是等腰三角形时,求OA的长; (3)如图3,点N是边BC上的动点,如果以NB为半径的N和以OA为半径的O外切,设NBy, OAx,求y关于x的函数关系式及定义域图1 图2 图3思路点拨1B的三角比反复用到,注意对应关系,防止错乱2分三种情况探究等腰OMP,各种情况都有各自特殊的位置关系,用几何说理的方法比较简单3探求y关于x的函数关系式,作OBN的边OB上的高,把OBN分割为两个具有公共直角边的直角三角 形满分解答(1) 在RtABC中,AC6,所以AB10,BC8过点M作MDAB,垂足为D在RtBMD中,BM2,所以因此MDMP,M与直线AB相离 图4(2)如图4,MOMDMP,因此不存在MOMP的情况如图5,当PMPO时,又因为PBPO,因此BOM是直角三角形在RtBOM中,BM2,所以此时如图6,当OMOP时,设底边MP对应的高为OE在RtBOE中,BE,所以此时图5 图6(3)如图7,过点N作NFAB,垂足为F联结ON当两圆外切时,半径和等于圆心距,所以ONxy在RtBNF中,BNy,所以,在RtONF中,由勾股定理得ON2OF2NF2于是得到整理,得定义域为0x5图7 图8考点伸展第(2)题也可以这样思考:如图8,在RtBMF中,BM2,在RtOMF中,OF,所以在RtBPQ中,BP1,在RtOPQ中,OF,所以当MOMP1时,方程没有实数根当POPM1时,解方程,可得当OMOP时,解方程,可得例2 2012年连云港市中考第26题如图1,甲、乙两人分别从A、B两点同时出发,点O为坐标原点甲沿AO方向、乙沿BO方向均以每小时4千米的速度行走,t小时后,甲到达M点,乙到达N点(1)请说明甲、乙两人到达点O前,MN与AB不可能平行;(2)当t为何值时,OMNOBA?(3)甲、乙两人之间的距离为MN的长设sMN2,求s与t之间的函数关系式,并求甲、乙两人之间距离 的最小值 图1答案 (1)当M、N都在O右侧时,所以因此MN与AB不平行(2)如图2,当M、N都在O右侧时,OMNB,不可能OMNOBA如图3,当M在O左侧、N在O右侧时,MONBOA,不可能OMNOBA如图4,当M、N都在O左侧时,如果OMNOBA,那么所以解得t2图2 图3 图4(3)如图2,如图3,如图4,综合、,s所以当t1时,甲、乙两人的最小距离为12千米2.2 由面积产生的函数关系问题 例1 2012年广东省中考第22题如图1,抛物线与x轴交于A、B两点,与y轴交于点C,联结BC、AC(1)求AB和OC的长;(2)点E从点A出发,沿x轴向点B运动(点E与点A、B不重合),过点E作BC的平行线交AC于点D 设AE的长为m,ADE的面积为s,求s关于m的函数关系式,并写出自变量m的取值范围;(3) 在(2)的条件下,联结CE,求CDE面积的最大值;此时,求出以点E为圆心,与BC相切的圆的面 积(结果保留) 图1思路点拨1ADE与ACB相似,面积比等于对应边的比的平方2C

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论