浙江省上虞市竺可桢中学高二数学《课时6正弦定理和余弦定理》学案.doc_第1页
浙江省上虞市竺可桢中学高二数学《课时6正弦定理和余弦定理》学案.doc_第2页
浙江省上虞市竺可桢中学高二数学《课时6正弦定理和余弦定理》学案.doc_第3页
全文预览已结束

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

浙江省上虞市竺可桢中学高二数学课时6正弦定理和余弦定理学案【复习目标】1、理解用向量的数量积证明正弦定理、余弦定理的方法。2、掌握正弦定理、余弦定理的变形形式。3、灵活运用正弦定理、余弦定理解决三角形中的有关问题。【双基研习】基础梳理1.三角形边角关系:设abc的三边为a、b、c,对应的三个角为a、b、c1)正弦定理 (r为外接圆半径) 变式1:a = 2r sina,b= 2r sinb,c= 2r sinc变式2:变式3:,2)余弦定理 c2 = a2+b22bccosc,b2 = a2+c22accosb,a2 = b2+c22bccosa变式1:; .; . . 2 三角形面积公式:(其中r为内切圆半径)3、解三角形常见题型及解法(1)已知两角a、b与一边a,由abc180可求出角c,由正弦定理再依次求出b、c.(2)已知三边a、b、c,由余弦定理可求出角a、b、c.(3) 已知两边a、b及其中一边的对角a,由正弦定理求出另一对角b(注意:角的取舍),由c(ab)求出c,再由正弦定理求出c。(4)已知两边b,c与其夹角a,由余弦定理求出a,再由正弦定理依次求出角b、c(注意:角的取舍)。4、常用的三角形内角恒等式: 由a(bc)可得出: sinasin(bc),cosacos(bc)由有: ,课前热身 1、在abc中,则bc的长为_.2、已知abc中,三角形面积,则角a 等于_.3、 (2010,广东)已知a,b,c分别是abc的三个内角a,b,c所对的边,若a1,b,ac2b,则sina_.【考点探究】例1、在abc中,(1)已知,求;(2)已知,求;(3)已知,求最大角。例2、在abc中,内角a,b,c对边的边长分别是a,b,c,已知c2,c.(1)若abc的面积等于,求a,b的值;(2)若sinb2sina,求abc的面积 例3、(2010年高考辽宁卷)在abc中,a,b,c分别为内角a,b,c的对边,且2asin a(2bc)sin b(2cb)sin c.(1)求a的大小;(2)若sinbsinc1,试判断abc的形状【方法感悟】判断三角形的形状,主要有如下两条途径:(1)利用正、余弦定理把已知条件转化为边边关系,通过因式分解、配方等得出边的相应关系,从而判断三角形的形状;(2)利用正、余弦定理把已知条件转化为内角三角函数间的关系,通过三角函数恒等变换,得出内角的关系,从而判断出三角形的形状,此时要注意应用abc这个结论,在两种解法的等式变形中,一般两边不要约去公因式,应移项提取公因式,以免漏解课时闯关6一、填空题1、在abc中,若,则_.2、在abc中,若,则a等于_.3、在abc中,若a120, ab5,bc7,则abc的面积是_4、在abc中,己知,则abc的形状为 。5、abc的内角a、b、c的对边分别为,若成等比数列,且,则_.6、已知锐角三角形的边长分别为,则的取值范围为_.二、解答题7、(09全国)在中,内角a、b、c的对边长分别为、,已知,且 求b。8、(1)已知方程的两根

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论