(经典)高考立体几何题型与方法全归纳文科(精典配套练习).doc_第1页
(经典)高考立体几何题型与方法全归纳文科(精典配套练习).doc_第2页
(经典)高考立体几何题型与方法全归纳文科(精典配套练习).doc_第3页
(经典)高考立体几何题型与方法全归纳文科(精典配套练习).doc_第4页
(经典)高考立体几何题型与方法全归纳文科(精典配套练习).doc_第5页
已阅读5页,还剩6页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2019高考立体几何题型与方法全归纳文科配套练习1、四棱锥中,底面, .()求证:平面;()若侧棱上的点满足,求三棱锥的体积。【答案】()证明:因为BC=CD,即为等腰三角形,又,故.因为底面,所以,从而与平面内两条相交直线都垂直,故平面。()解:.由底面知. 由得三棱锥的高为,故:2、如图,四棱锥中,四边形为矩形,为等腰三角形,平面 平面,且,分别为和的中点()证明:平面;()证明:平面平面;()求四棱锥的体积【答案】()证明:如图,连结四边形为矩形且是的中点也是的中点 又是的中点, 平面,平面,所以平面; ()证明:平面 平面,平面 平面,所以平面 平面,又平面,所以 又,是相交直线,所以面 又平面,平面平面; ()取中点为连结,为等腰直角三角形,所以,因为面面且面面,所以,面,即为四棱锥的高 由得又四棱锥的体积 考点:空间中线面的位置关系、空间几何体的体积.3、如图,在四棱锥中, ,.()证明:;()若求四棱锥的体积【答案】()设,连接EF, 平分为中点,为中点,为的中位线. ,. ()底面四边形的面积记为; 考点:1.线面平行的证明;2.空间几何体的体积计算.4、如图,在四棱锥中,底面为菱形,其中,为的中点(1) 求证:;(2) 若平面平面,且为的中点,求四棱锥的体积【答案】 (1),为中点, 连,在中,为等边三角形,为的中点,, ,平面,平面 , 平面. (2)连接,作于. ,平面,平面平面ABCD,平面平面ABCD, , , . , 又,. 在菱形中,, . 5、如图,是矩形中边上的点,为边的中点,现将沿边折至位置,且平面平面. 求证:平面平面; 求四棱锥的体积. 【答案】(1) 证明:由题可知,(2) ,则. 6、已知四棱锥中,是正方形,E是的中点,(1)若,求 PC与面AC所成的角(2) 求证:平面(3) 求证:平面PBC平面PCD【答案】平面,是直线在平面上的射影,是直线和平面所成的角。又,四边形是正方形,;直线和平面所成的角为(2)连接AC交BD与O,连接EO, E、O分别为PA、AC的中点EOPC PC平面EBD,EO平面EBD PC平面EBD(3)PD平面ABCD, BC平面ABCD,PDBC,ABCD为正方形 BCCD,PDCD=D, PD,CD平面PCDBC平面PCD又 BC平面PBC平面PBC平面PCD7、在边长为的正方形中,分别为的中点,分别为的中点,现沿折叠,使三点重合,重合后的点记为,构成一个三棱锥(1)请判断与平面的位置关系,并给出证明;(2)证明平面;(3)求四棱锥的体积【答案】(1)平行平面 证明:由题意可知点在折叠前后都分别是的中点(折叠后两点重合)所以平行因为,所以平行平面.(2)证明:由题意可知的关系在折叠前后都没有改变.因为在折叠前,由于折叠后,点,所以 因为,所以平面.(3) .8、在如图所示的几何体中,四边形是正方形,平面,、分别为、的中点,且.(1)求证:平面平面;(2)求三棱锥与四棱锥的体积之比【答案】(1)证明:平面,平面,又平面,为正方形,DC.,平面.在中,因为分别为、的中点,平面.又平面,平面平面.(2)不妨设,为正方形,又平面,所以.由于平面,且,所以即为点到平面的距离,三棱锥2.所以.9、如图,在底面是直角梯形的四棱锥S-ABCD中,(1)求四棱锥S-ABCD的体积;(2)求证:(3)求SC与底面ABCD所成角的正切值。【答案】(1)解: (2)证明:又 (3)解:连结AC,则就是SC与底面ABCD所成的角。在三角形SCA中,SA=1,AC=, 10、如图,平面,分别为的中点(I)证明:平面;(II)求与平面所成角的正弦值【答案】()证明:连接, 在中,分别是的中点,所以, 又,所以,又平面ACD ,DC平面ACD, 所以平面ACD()在中,所以 而DC平面ABC,所以平面ABC 而平面ABE, 所以平面ABE平面ABC,

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论