



全文预览已结束
下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
湖南省蓝山二中高一数学2.1.3 分层抽样教案 新人教a版必修3一 教材分析 1 教材背景 统计是是数学及应用的重要组成部分,与实际生活密切相关.随着科学技术的发展,统计思想已成为数学素养的一部分,所以学习统计是非常必要的。 2 本节课的地位及作用 本节课是第2章的第3节课,这部分的学习是在学习了简单随机抽样与系统抽样的基础上,进一步学习分层抽样的方法.二 重点难点正确理解分层抽样的定义,灵活应用分层抽样抽取样本,并恰当的选择三种抽样方法解决现实生活中的抽样问题。三 教学目标1、知识与技能:(1)正确理解分层抽样的概念;(2)掌握分层抽样的一般步骤;(3)区分简单随机抽样、系统抽样和分层抽样,并选择适当正确的方法进行抽样。 2、过程与方法:通过对现实生活中实际问题进行分层抽样,感知应用数学知识解决实际问题的方法。 3、情感态度与价值观:通过对统计学知识的研究,感知数学知识中“估计与“精确”性的矛盾统一,培养学生的辩证唯物主义的世界观与价值观。 四 教学设计 1.情景引入 假设某地区有高中生2400人,初中生10900人,小学生11000人,此地教育部门为了了解本地区中小学的近视情况及其形成原因,要从本地区的小学生中抽取1%的学生进行调查,你认为应当怎样抽取样本?2.探究新知一、分层抽样的定义。一般地,在抽样时,将总体分成互不交叉的层,然后按照一定的比例,从各层独立地抽取一定数量的个体,将各层取出的个体合在一起作为样本,这种抽样的方法叫分层抽样。【说明】分层抽样又称类型抽样,应用分层抽样应遵循以下要求:(1)分层:将相似的个体归人一类,即为一层,分层要求每层的各个个体互不交叉,即遵循不重复、不遗漏的原则。(2)分层抽样为保证每个个体等可能入样,需遵循在各层中进行简单随机抽样,每层样本数量与每层个体数量的比与这层个体数量与总体容量的比相等。二、分层抽样的步骤:问题1:某单位有职工500人,其中35岁以下的有125人,35岁49岁的有280人,50岁以上的有95人.为了调查职工的身体状况,要从中抽取一个容量为100的样本.思考1:该项调查应采用哪种抽样方法进行?思考2:按比例,三个年龄层次的职工分别抽取多少人?35岁以下25人,35岁49岁56人,50岁以上19人.思考3:在各年龄段具体如何抽样?怎样获得所需样本?思考4:一般地,分层抽样的操作步骤如何?第一步,计算样本容量与总体的个体数之比.第二步,将总体分成互不交叉的层,按比例确定各层要抽取的个体数.第三步,用简单随机抽样或系统抽样在各层中抽取相应数量的个体.第四步,将各层抽取的个体合在一起,就得到所取样本.思考5:在分层抽样中,如果总体的个体数为n,样本容量为n,第i层的个体数为k,则在第i层应抽取的个体数如何算?思考6:样本容量与总体的个体数之比是分层抽样的比例常数,按这个比例可以确定各层应抽取的个体数,如果各层应抽取的个体数不都是整数该如何处理?调节样本容量,剔除个体. 思考7:简单随机抽样、系统抽样和分层抽样既有其共性,又有其个性,根据下表,你能对三种抽样方法作一个比较吗?(1)分层:按某种特征将总体分成若干部分。(2)按比例确定每层抽取个体的个数。(3)各层分别按简单随机抽样的方法抽取。(4)综合每层抽样,组成样本。【说明】(1)分层需遵循不重复、不遗漏的原则。(2)抽取比例由每层个体占总体的比例确定。(3)各层抽样按简单随机抽样进行。问题2:分层抽样又称类型抽样,即将相似的个体归入一类(层),然后每层抽取若干个体构成样本,所以分层抽样为保证每个个体等可能入样,必须进行 ( ) a、每层等可能抽样 b、每层不等可能抽样 c、所有层按同一抽样比等可能抽样问题3:如果采用分层抽样,从个体数为n的总体中抽取一个容量为n样本,那么每个个体被抽到的可能性为 ( ) a b. c. d.解析:问题2:保证每个个体等可能入样是简单随机抽样、系统抽样、分层抽样.共同的特征,为了保证这一点,分层时用同一抽样比是必不可少的,故此选c。问题3:根据每个个体都等可能入样,所以其可能性本容量与总体容量比,故此题选c。3.例题精析例1、 某高中共有900人,其中高一年级300人,高二年级200人,高三年级400人,现采用分层抽样抽取容量为45的样本,那么高一、高二、高三各年级抽取的人数分别为a.15,5,25 b.15,15,15c.10,5,30 d15,10,20分析因为300:200:400=3:2:4,于是将45分成3:2:4的三部分。设三部分各抽取的个体数分别为3x,2x,4x,由3x+2x+4x=45,得x=5,故高一、高二、高三各年级抽取的人数分别为15,10,20,故选d。例2:一个地区共有5个乡镇,人口3万人,其中人口比例为3:2:5:2:3,从3万人中抽取一个300人的样本,分析某种疾病的发病率,已知这种疾病与不同的地理位置及水土有关,问应采取什么样的方法?并写出具体过程。分析采用分层抽样的方法。解:因为疾病与地理位置和水土均有关系,所以不同乡镇的发病情况差异明显,因而采用分层抽样的方法,具体过程如下:(1)将3万人分为5层,其中一个乡镇为一层。(2)按照样本容量的比例随机抽取各乡镇应抽取的样本。3003/15=60(人),3002/15=100(人),3002/15=40(人),3002/15=60(人),因此各乡镇抽取人数分别为60人、40人、100人、40人、60 人。(3)将300人组到一起,即得到一个样本。例3 某公司共有1000名员工,下设若干部门,现用分层抽样法,从全体员工中抽取一个容量为80的样本,已知策划部被抽取4个员工,求策划部的员工人数是多少?答案:50人.例4 某中学有180名教职员工,其中教学人员144人,管理人员12人,后勤服务人员24人,设计一个抽样方案,从中选取15人去参观旅游.答案:用分层抽样,抽取教学人员12人,管理人员1人,后勤服务人员2人.例5 某公司在甲、乙、丙、丁四个地区分别有150个、120个、180个、150个销售点,公司为了调查产品的销售情况,需从这600个销售点中抽取一个容量为100的样本,记这项调查为;在丙地区中有20个特大型销售点,要从中抽取7个调查其销售收入和售后服务等情况,记这项调查为,完成这两项调查宜分别采用什么方法?答案:用分层抽样,用简单随机抽样. 4.课堂练习p59 练习1. 2. 3.1、某单位有老年人28人,中年人54人,青年人81人,为了调查他们的身体情况,需从他们中抽取一个容量为36的样本,则适合的抽取方法是 ( )a简单随机抽样b系统抽样c分层抽样d先从老人中剔除1人,然后再分层抽样2、某校有500名学生,其中o型血的有200人,a型血的人有125人,b型血的有125人,ab型血的有50人,为了研究血型与色弱的关系,要从中抽取一个20人的样本,按分层抽样,o型血应抽取的人数为 人,a型血应抽取的人数为 人,b型血应抽取的人数为 人,ab型血应抽取的人数为 人。3、某中学高一年级有学生600人,高二年级有学生450人,高三年级有学生750人,每个学生被抽到的可能性均为0.2,若该校取一个容量为n的样本,则n= 。4、对某单位1000名职工进行某项专门调查,调查的项目与职工任职年限有关,人事部门提供了如下资料:任职年限5年以下5年至10年10年以上人数300500200试利用上述资料设计一个抽样比为1/10的抽样方法。5.课堂小结1、分层抽样是当总体由差异明显的几部分组成时采用的抽样方法,进行分层抽样时应注意以下几点:(1)、分层抽样中分多少层、如何分层要视具体情况而定,总的原则是,层内样本的差异要小,面
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 压力管理培训课件
- 压力容器运行安全培训课件
- 2025年可再生能源产业发展策略与市场前景研究报告
- 2025年医疗健康行业智能医疗设备市场前景研究报告
- 国家事业单位招聘2025国家退役军人事务部烈士纪念设施保护中心(烈士遗骸搜寻鉴定中心)招聘笔试历年参考题库附带答案详解
- 博望区2025年安徽马鞍山博望区政府相关部门招聘笔试历年参考题库附带答案详解
- 云南省2025云南红河州个旧市“锡引”人才青年党政干部储备人才专项招引(20人)笔试历年参考题库附带答案详解
- 2025贵州贵阳南明产业投资发展(集团)有限责任公司社会化招聘13人笔试参考题库附带答案详解
- 2025新疆新星运营公司本部及权属企业第一次招聘18人笔试参考题库附带答案详解
- 2025年鲁信创业投资集团股份有限公司社会招聘(5人)笔试参考题库附带答案详解
- 监狱公选面试题库及答案
- 具有法律效应的还款协议书6篇
- 2025年中国铁建集团招聘面试模拟题及答案详解
- T-AOPA0062-2024电动航空器电推进系统动力电机控制器技术规范
- 2025特种设备(电梯)安全管理人员A证考试试卷(200道)及答案
- 2024年一级建造师《民航机场工程管理与实务》真题及答案
- 2025年广东省中考英语试卷深度评析及2026年备考策略
- (2025年标准)买月饼协议书
- 2025年浙江省中考英语真题(原卷版)
- 交通事故处理报告
- 2025光伏发电项目施工分包合同
评论
0/150
提交评论