


全文预览已结束
下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
江苏省环视金湖县吕良中学九年级数学5.7正多边形和圆学案 苏科版一、学习目标:1.使学生理解正多边形概念,初步掌握正多边形与圆的关系,2.会通过等分圆心角的方法等分圆周,画出所需的正多边形,3.能够用直尺和圆规作图,作出一些特殊的正多边形。4.理解正多边形的中心、半径、边心距、中心角等概念5.学生培养学生对图形美的欣赏能力,让学生到生活中去发现美。二、知识准备1在理解感知圆和正多边形的基础上,理解正多边形与圆的关系,会用量角器画正多边形,会用直尺和圆规画特殊的正多边形。2通过观察大量的实物图形理解归纳这些图形的共同特征引出正多边形的概念。三、学习内容(1)概念:各边相等、各角也相等的多边形叫做正多边形如果一个正多边形有n(n3)条边,就叫正n边形等边三角形有三条边叫正三角形,正方形有四条边叫正四边形(2)概念理解:请同学们举例,自己在日常生活中见过的正多边形(正三角形、正方形、正六边形,.)矩形是正多边形吗?为什么?菱形是正多边形吗?为什么?问题:正多边形与圆有什么关系呢?什么是正多边形的中心?发现:正三角形与正方形都有内切圆和外接圆,并且为同心圆圆心就是正多边形的中心。分析:正三角形三个顶点把圆三等分;正方形的四个顶点把圆四等分要将圆五等分,把等分点顺次连结,可得正五边形要将圆六等分呢?你知道为什么吗?问题:图中的正多边形,哪些是轴对称图形?哪些是中心对称图形?哪些既是轴对称图形,又是中心对称图形?如是轴对称图形,画出它的对称轴;如是中心对称图形,找出它的对称中心。(如果一个正多边形是中心对称图形,那么它的中心就是对称中心。)思考:任何一个正多边形既是轴对称图形,又是中心对称图形吗?跟边数有何关系?问题:用直尺和圆规作出正方形,正六多边形。思考:如何作正三角形、正十二边形?拓展1:已知:如图,五边形abcde内接于o,ab=bc=cd=de=ea求证:五边形abcde是正五边形拓展2:各内角都相等的圆内接多边形是否为正多边形相关概念:正多边形的外接圆(或内切圆)的圆心叫做正多边形的中心,外接圆的半径叫做正多边形的半径,内切圆的半径叫做正多边形的边心距正多边形各边所对的外接圆的圆心角都相等正多边形每一边所对的外接圆的圆心角叫做正多边形的中心角正n边形的每个中心角都等于 四、知识梳理1、叫正多边形2、正多边性与圆的关系是。3正多边形的对称性。五、达标检测(一)、判断1.各边相等的多边形是正多边形( )2.各角相等的多边形是正多边形( )3.正十边形绕其中心旋转36和本身重合( )(二)、填空1、正多边形都是 对称图形,一个正n边形有 条对称轴,每条对称轴都通过正n边形的 ;一个正多边形,如果有偶数条边,那么它既是 ,又是 对称图形。2、正十二边形的每一个外角为 每一个内角是 该图形绕其中心至少旋转 和本身重合3、用一张圆形的纸剪一个边长为4cm的正六边形,则这个圆形纸片的半径最小应为_ cm4、正方形abcd的外接圆圆心o叫做正方形abcd的_5、正方形abcd的内切圆o的半径oe叫做正方形abcd的_6、若正六边形的边长为1,那么正六边形的中心角是_度,半径是_,边心距是_,它的每一个内角是_7、正n边形的一个外角度数与它的_角的度数相等(三)解答题1、设一直角三角形的面积为82,两直角边长分别为x和y.(1)写出y()和x()之间的函数关系式(2)画出这个函数关系所对应的图象(3)根据图象,回答下列问题: 当x =2时,y等于多少? x为何值时,这个直角三角形是等腰直角三角形?2、已知三角形的两边长分别是方程 的两根,第三边的长是方程 的根,求这个三角形的周长。3、如图,pa和p
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 安全员列年考及答案
- 低碳城市渣土车智能监控与污染控制技术
- 2025年新能源汽车智能座舱智能座椅加热通风功能研究报告:用户体验与技术创新
- 2025年工程电梯常识题库及答案
- 多个应急预案演示(3篇)
- 堵门岗应急预案(3篇)
- 语文专业能力面试题及答案
- DB65T 4521-2022 孜然芹栽培技术规程
- DB65T 4448-2021 公路沥青路面沥青混合料拌和质量动态监测规范
- 电气春节应急预案(3篇)
- 级配碎石培训课件
- 2025年新团员入团考试试题及答案
- 2025成人高等学校专升本招生统一考试政治试题及答案解析
- 《浙江省中药饮片炮制规范》 2015年版
- DBJ50-T-271-2017 城市轨道交通结构检测监测技术标准
- T∕CGMA 033001-2018 压缩空气站能效分级指南
- 《光电显示技术》OLED原理
- 诊断学基础知识常见症状ppt课件
- 丰田安全管理(安全班组活动)(课堂PPT)
- ISOIEC17025实验室质量管理体系漫谈经验
- 外研版六年级上册英语学案
评论
0/150
提交评论