分式方程及其应用初中数学组卷.doc_第1页
分式方程及其应用初中数学组卷.doc_第2页
分式方程及其应用初中数学组卷.doc_第3页
分式方程及其应用初中数学组卷.doc_第4页
分式方程及其应用初中数学组卷.doc_第5页
已阅读5页,还剩17页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

一选择题(共8小题)1(2014龙岩)某小区为了排污,需铺设一段全长为720米的排污管道,为减少施工对居民生活的影响,须缩短施工时间,实际施工时每天的工作效率比原计划提高20%,结果提前2天完成任务设原计划每天铺设x米,下面所列方程正确的是()A=2B=2C=2D=2(2014宁夏)甲种污水处理器处理25吨的污水与乙种污水处理器处理35吨的污水所用时间相同,已知乙种污水处理器每小时比甲种污水处理器多处理20吨的污水,求两种污水处理器的污水处理效率设甲种污水处理器的污水处理效率为x吨/小时,依题意列方程正确的是()ABCD3(2014兴化市二模)兴化市教育局为帮助全市贫困师生举行“一日捐”活动,甲、乙两校教师各捐款30000元,已知“”,设乙学校教师有x人,则可得方程=20根据此情景,题中用“”表示的缺失的条件应补()A乙校教师比甲校教师人均多捐20元,且甲校教师的人数比乙校教师的人数多20%B甲校教师比乙校教师人均多捐20元,且乙校教师的人数比甲校教师的人数多20%C甲校教师比乙校教师人均多捐20元,且甲校教师的人数比乙校教师的人数多20%D乙校教师比甲校教师人均多捐20元,且乙校教师的人数比甲校教师的人数多20%4(2013泰安)某电子元件厂准备生产4600个电子元件,甲车间独立生产了一半后,由于要尽快投入市场,乙车间也加入该电子元件的生产,若乙车间每天生产的电子元件是甲车间的1.3倍,结果用33天完成任务,问甲车间每天生产电子元件多少个?在这个问题中设甲车间每天生产电子元件x个,根据题意可得方程为()ABCD5在下列方程中,关于x的分式方程的个数有();A2个B3个C4个D5个6下面说法中,正确的是()A分式方程一定有解B分式方程就是含有分母的方程C分式方程中,分母中一定含有未知数D把分式方程化为整式方程,则这个整式方程的解就是这个分式方程的解7(2014拱墅区二模)以下说法:关于x的方程x+=c+的解是x=c(c0);方程组的正整数解有2组;已知关于x,y的方程组,其中3a1,当a=1时,方程组的解也是方程x+y=4a的解;其中正确的有()ABCD8(2013黑龙江)已知关于x的分式方程=1的解是非正数,则a的取值范围是()Aa1Ba1且a2Ca1且a2Da1二填空题(共3小题)9(2015日照模拟)当m_时,方程=无解10(2014成都)已知关于x的分式方程=1的解为负数,则k的取值范围是_11(2014凉山州)关于x的方程=1的解是正数,则a的取值范围是_三解答题(共19小题)12(2014梅州)某校为美化校园,计划对面积为1800m2的区域进行绿化,安排甲、乙两个工程队完成已知甲队每天能完成绿化的面积是乙队每天能完成绿化的面积的2倍,并且在独立完成面积为400m2区域的绿化时,甲队比乙队少用4天(1)求甲、乙两工程队每天能完成绿化的面积分别是多少m2?(2)若学校每天需付给甲队的绿化费用为0.4万元,乙队为0.25万元,要使这次的绿化总费用不超过8万元,至少应安排甲队工作多少天?13(2014贺州)马小虎的家距离学校1800米,一天马小虎从家去上学,出发10分钟后,爸爸发现他的数学课本忘记拿了,立即带上课本去追他,在距离学校200米的地方追上了他,已知爸爸的速度是马小虎速度的2倍,求马小虎的速度14(2014济宁)济宁市“五城同创”活动中,一项绿化工程由甲、乙两工程队承担已知甲工程队单独完成这项工作需120天,甲工程队单独工作30天后,乙工程队参与合做,两队又共同工作了36天完成(1)求乙工程队单独完成这项工作需要多少天?(2)因工期的需要,将此项工程分成两部分,甲做其中一部分用了x天完成,乙做另一部分用了y天完成,其中x、y均为正整数,且x46,y52,求甲、乙两队各做了多少天?15(2014泰安)某超市用3000元购进某种干果销售,由于销售状况良好,超市又调拨9000元资金购进该种干果,但这次的进价比第一次的进价提高了20%,购进干果数量是第一次的2倍还多300千克,如果超市按每千克9元的价格出售,当大部分干果售出后,余下的600千克按售价的8折售完(1)该种干果的第一次进价是每千克多少元?(2)超市销售这种干果共盈利多少元?16(2014丽水)为了保护环境,某开发区综合治理指挥部决定购买A,B两种型号的污水处理设备共10台已知用90万元购买A型号的污水处理设备的台数与用75万元购买B型号的污水处理设备的台数相同,每台设备价格及月处理污水量如下表所示:污水处理设备A型B型价格(万元/台)mm3月处理污水量(吨/台)220180(1)求m的值;(2)由于受资金限制,指挥部用于购买污水处理设备的资金不超过165万元,问有多少种购买方案?并求出每月最多处理污水量的吨数17(2014牡丹江)学校计划选购甲、乙两种图书作为“校园读书节”的奖品已知甲图书的单价是乙图书单价的1.5倍;用600元单独购买甲种图书比单独购买乙种图书要少10本(1)甲、乙两种图书的单价分别为多少元?(2)若学校计划购买这两种图书共40本,且投入的经费不超过1050元,要使购买的甲种图书数量不少于乙种图书的数量,则共有几种购买方案?18(2014襄阳)甲、乙两座城市的中心火车站A,B两站相距360km一列动车与一列特快列车分别从A,B两站同时出发相向而行,动车的平均速度比特快列车快54km/h,当动车到达B站时,特快列车恰好到达距离A站135km处的C站求动车和特快列车的平均速度各是多少?19(2014永州)某校枇杷基地的枇杷成熟了,准备请专业摘果队帮忙摘果,现有甲、乙两支专业摘果队,若由甲队单独摘果,预计6天才能完成,为了减少枇杷因气候变化等原因带来的损失,现决定由甲、乙两队同时摘果,则2天可以完成,请问:(1)若单独由乙队摘果,需要几天才能完成?(2)若有三种摘果方案,方案1:单独请甲队;方案2:同时请甲、乙两队;方案3:单独请乙对甲队每摘果一天,需支付给甲队1000元工资,乙队每摘果一天,须支付给乙队1600元工资,你认为用哪种方案完成所有摘果任务需支付给摘果队的总工资最低?最低总工资是多少元?20(2014六盘水)某校选派一部分学生参加“六盘水市马拉松比赛”,要为每位参赛学生购买一顶帽子商场规定:凡一次性购买200顶或200顶以上,可按批发价付款;购买200顶以下只能按零售价付款如果为每位参赛学生购买1顶,那么只能按零售价付款,需用900元;如果多购买45顶,那么可以按批发价付款,同样需用900元问:(1)参赛学生人数x在什么范围内?(2)若按批发价购买15顶与按零售价购买12顶的款相同,那么参赛学生人数x是多少?21(2014自贡)学校新到一批理、化、生实验器材需要整理,若实验管理员李老师一人单独整理需要40分钟完成,现在李老师与工人王师傅共同整理20分钟后,李老师因事外出,王师傅再单独整理了20分钟才完成任务(1)王师傅单独整理这批实验器材需要多少分钟?(2)学校要求王师傅的工作时间不能超过30分钟,要完成整理这批器材,李老师至少要工作多少分钟?22(2014营口)为弘扬中华民族传统文化,某校举办了“古诗文大赛”,并为获奖同学购买签字笔和笔记本作为奖品1支签字笔和2个笔记本共8.5元,2支签字笔和3个笔记本共13.5元(1)求签字笔和笔记本的单价分别是多少元?(2)为了激发学生的学习热情,学校决定给每名获奖同学再购买一本文学类图书,如果给每名获奖同学都买一本图书,需要花费720元;书店出台如下促销方案:购买图书总数超过50本可以享受8折优惠学校如果多买12本,则可以享受优惠且所花钱数与原来相同问学校获奖的同学有多少人?23(2014内江)某汽车销售公司经销某品牌A款汽车,随着汽车的普及,其价格也在不断下降今年5月份A款汽车的售价比去年同期每辆降价1万元,如果卖出相同数量的A款汽车,去年销售额为100万元,今年销售额只有90万元(1)今年5月份A款汽车每辆售价多少万元?(2)为了增加收入,汽车销售公司决定再经销同品牌的B款汽车,已知A款汽车每辆进价为7.5万元,B款汽车每辆进价为6万元,公司预计用不多于105万元且不少于99万元的资金购进这两款汽车共15辆,有几种进货方案?(3)如果B款汽车每辆售价为8万元,为打开B款汽车的销路,公司决定每售出一辆B款汽车,返还顾客现金a万元,要使(2)中所有的方案获利相同,a值应是多少?此时,哪种方案对公司更有利?24(2013三明)兴发服装店老板用4500元购进一批某款T恤衫,由于深受顾客喜爱,很快售完,老板又用4950元购进第二批该款式T恤衫,所购数量与第一批相同,但每件进价比第一批多了9元(1)第一批该款式T恤衫每件进价是多少元?(2)老板以每件120元的价格销售该款式T恤衫,当第二批T恤衫售出时,出现了滞销,于是决定降价促销,若要使第二批的销售利润不低于650元,剩余的T恤衫每件售价至少要多少元?(利润=售价进价)25(2013贺州)某校为了丰富学生的校园生活,准备购进一批篮球和足球其中篮球的单价比足球的单价多40元,用1500元购进的篮球个数与900元购进的足球个数相等(1)篮球和足球的单价各是多少元?(2)该校打算用1000元购买篮球和足球,问恰好用完1000元,并且篮球、足球都买有的购买方案有哪几种?26(2014上海)解方程:=27(2014南宁)解方程:=128a为何值时,关于x的方程会产生增根?29m为何值时,关于x的方程 +=会产生增根?30若解关于x的分式方程会产生增根,求m的值2014年12月08日千羽熏的初中数学组卷参考答案与试题解析一选择题(共8小题)1(2014龙岩)某小区为了排污,需铺设一段全长为720米的排污管道,为减少施工对居民生活的影响,须缩短施工时间,实际施工时每天的工作效率比原计划提高20%,结果提前2天完成任务设原计划每天铺设x米,下面所列方程正确的是()A=2B=2C=2D=考点:由实际问题抽象出分式方程菁优网版权所有分析:设原计划每天铺设x米,则实际施工时每天铺设(1+20%)x米,根据实际施工比原计划提前2天完成,列出方程即可解答:解:设原计划每天铺设x米,则实际施工时每天铺设(1+20%)x米,由题意得,=2故选:A点评:本题考查了由实际问题抽象出分式方程,关键是读懂题意,设出未知数,找出合适的等量关系,列出方程2(2014宁夏)甲种污水处理器处理25吨的污水与乙种污水处理器处理35吨的污水所用时间相同,已知乙种污水处理器每小时比甲种污水处理器多处理20吨的污水,求两种污水处理器的污水处理效率设甲种污水处理器的污水处理效率为x吨/小时,依题意列方程正确的是()ABCD考点:由实际问题抽象出分式方程菁优网版权所有专题:工程问题分析:设甲种污水处理器的污水处理效率为x吨/小时,则乙种污水处理器的污水处理效率为(x+20)吨/小时,根据甲种污水处理器处理25吨的污水与乙种污水处理器处理35吨的污水所用时间相同,列出方程解答:解:设甲种污水处理器的污水处理效率为x吨/小时,则乙种污水处理器的污水处理效率为(x+20)吨/小时,由题意得,=故选:B点评:本题考查了由实际问题抽象出分式方程,关键是读懂题意,设出未知数,找出合适的等量关系,列出方程3(2014兴化市二模)兴化市教育局为帮助全市贫困师生举行“一日捐”活动,甲、乙两校教师各捐款30000元,已知“”,设乙学校教师有x人,则可得方程=20根据此情景,题中用“”表示的缺失的条件应补()A乙校教师比甲校教师人均多捐20元,且甲校教师的人数比乙校教师的人数多20%B甲校教师比乙校教师人均多捐20元,且乙校教师的人数比甲校教师的人数多20%C甲校教师比乙校教师人均多捐20元,且甲校教师的人数比乙校教师的人数多20%D乙校教师比甲校教师人均多捐20元,且乙校教师的人数比甲校教师的人数多20%考点:由实际问题抽象出分式方程菁优网版权所有分析:方程=20中,表示乙校教师人均捐款额,(1+20%)x表示甲校教师的人数比乙校教师的人数多20%,则表示甲校教师人均捐款额,所以方程表示的等量关系为:乙校教师比甲校教师人均多捐20元,由此得出题中用“”表示的缺失的条件解答:解:设乙学校教师有x人,那么当甲校教师的人数比乙校教师的人数多20%时,甲校教师有(1+20%)x人如果乙校教师比甲校教师人均多捐20元,那么可列出方程=20故选A点评:本题考查了由实际问题抽象出分式方程的逆应用,根据所设未知数以及方程逆推缺少的条件本题难度适中4(2013泰安)某电子元件厂准备生产4600个电子元件,甲车间独立生产了一半后,由于要尽快投入市场,乙车间也加入该电子元件的生产,若乙车间每天生产的电子元件是甲车间的1.3倍,结果用33天完成任务,问甲车间每天生产电子元件多少个?在这个问题中设甲车间每天生产电子元件x个,根据题意可得方程为()ABCD考点:由实际问题抽象出分式方程菁优网版权所有分析:首先设甲车间每天能加工x个,则乙车间每天能加工1.3x个,由题意可得等量关系:甲车间生产2300件所用的时间+甲乙两车间生产2300件所用的时间=33天,根据等量关系可列出方程解答:解:设甲车间每天能加工x个,则乙车间每天能加工1.3x个,根据题意可得:+=33,故选:B点评:本题主要考查了由实际问题抽象出分式方程,关键是正确理解题意,找出题目中的等量关系,再列出方程5在下列方程中,关于x的分式方程的个数有();A2个B3个C4个D5个考点:分式方程的定义菁优网版权所有分析:根据分式方程的定义:分母里含有字母的方程叫做分式方程进行判断解答:解:、的分母中不含有未知数,它们是整式方程,不是分式方程;、的分母中含未知数x,故是分式方程故选B点评:本题考查了分式方程的定义判断一个方程是否为分式方程,主要是依据分式方程的定义,也就是看分母中是否含有未知数(注意:仅仅是字母不行,必须是表示未知数的字母)6下面说法中,正确的是()A分式方程一定有解B分式方程就是含有分母的方程C分式方程中,分母中一定含有未知数D把分式方程化为整式方程,则这个整式方程的解就是这个分式方程的解考点:分式方程的定义;分式方程的解菁优网版权所有分析:根据分式方程的定义:分母里含有字母的方程叫做分式方程进行判断,即可得出答案解答:解:A、分式方程不一定有解,故本选项错误;B、根据方程必须具备两个条件:含有未知数;是等式,故本选项错误;C、分式方程中,分母中一定含有未知数,故本选项正确;D、把分式方程化为整式方程,这个整式方程的解不一定是这个分式方程的解,故本选项错误;故选C点评:此题考查了分式方程的定义,判断一个方程是否为分式方程,主要是依据分式方程的定义,也就是看分母中是否含有未知数(注意:仅仅是字母不行,必须是表示未知数的字母)7(2014拱墅区二模)以下说法:关于x的方程x+=c+的解是x=c(c0);方程组的正整数解有2组;已知关于x,y的方程组,其中3a1,当a=1时,方程组的解也是方程x+y=4a的解;其中正确的有()ABCD考点:分式方程的解;二元一次方程组的解菁优网版权所有分析:直接解出方程的解即可;首先将方程变为(x+y)z=23,得出z的值,进而求出将z=1代入原方程转化为,求出即可;将a的值代入求出即可解答:解:关于x的方程x+=c+的解是x=c或x=(c0),故此选项错误;方程组的正整数解有2组,方程组,x、y、z是正整数,x+y223只能分解为231方程变为(x+y)z=23只能是z=1,x+y=23将z=1代入原方程转化为,解得x=2、y=21或x=20、y=3这个方程组的正整数解是(2,21,1)、(20,3,1),故此选项正确;已知关于x,y的方程组,其中3a1,当a=1时,则x+y=3,故方程组的解也是方程x+y=4a=3的解,此选项正确故选:A点评:此题主要考查了分式方程的解法以及二元二次方程组的解法等知识,正确将原式变形是解题关键8(2013黑龙江)已知关于x的分式方程=1的解是非正数,则a的取值范围是()Aa1Ba1且a2Ca1且a2Da1考点:分式方程的解菁优网版权所有分析:先解关于x的分式方程,求得x的值,然后再依据“解是非正数”建立不等式求a的取值范围解答:解:去分母,得a+2=x+1,解得,x=a+1,x0且x+10,a+10且a+11,a1且a2,a1且a2故选B点评:本题考查了分式方程的解,解一元一次不等式,需注意在任何时候都要考虑分母不为0,这也是本题最容易出错的地方二填空题(共3小题)9(2015日照模拟)当m=2时,方程=无解考点:分式方程的解菁优网版权所有专题:计算题分析:按照一般步骤解方程,用含有m的式子表示x,因为无解,所以x是能使最简公分母为0的值,从而求出m解答:解:原方程化为整式方程得,x1=m因为无解即有增根,x3=0,x=3,当x=3时,m=31=2点评:增根问题可按如下步骤进行:让最简公分母为0确定增根;化分式方程为整式方程;把增根代入整式方程即可求得相关字母的值10(2014成都)已知关于x的分式方程=1的解为负数,则k的取值范围是k且k1考点:分式方程的解菁优网版权所有专题:计算题分析:分式方程去分母转化为整式方程,求出整式方程的解得到x的值,根据解为负数确定出k的范围即可解答:解:去分母得:(x+k)(x1)k(x+1)=x21,去括号得:x2x+kxkkxk=x21,移项合并得:x=12k,根据题意得:12k0,且12k1解得:k且k1故答案为:k且k1点评:此题考查了分式方程的解,本题需注意在任何时候都要考虑分母不为011(2014凉山州)关于x的方程=1的解是正数,则a的取值范围是a1且a考点:分式方程的解菁优网版权所有分析:根据解分式方程的步骤,可得分式方程的解,根据分式方程的解是正数,可得答案解答:解:=1,解得x=,=1的解是正数,x0且x2,即0且2,解得a1且a故答案为:a1且a点评:本题考查了分式方程的解,先求出分式方程的解,再求出a的取值范围三解答题(共19小题)12(2014梅州)某校为美化校园,计划对面积为1800m2的区域进行绿化,安排甲、乙两个工程队完成已知甲队每天能完成绿化的面积是乙队每天能完成绿化的面积的2倍,并且在独立完成面积为400m2区域的绿化时,甲队比乙队少用4天(1)求甲、乙两工程队每天能完成绿化的面积分别是多少m2?(2)若学校每天需付给甲队的绿化费用为0.4万元,乙队为0.25万元,要使这次的绿化总费用不超过8万元,至少应安排甲队工作多少天?考点:分式方程的应用;一元一次不等式的应用菁优网版权所有专题:工程问题分析:(1)设乙工程队每天能完成绿化的面积是x(m2),根据在独立完成面积为400m2区域的绿化时,甲队比乙队少用4天,列出方程,求解即可;(2)设至少应安排甲队工作x天,根据这次的绿化总费用不超过8万元,列出不等式,求解即可解答:解:(1)设乙工程队每天能完成绿化的面积是x (m2),根据题意得:=4,解得:x=50,经检验x=50是原方程的解,则甲工程队每天能完成绿化的面积是502=100(m2),答:甲、乙两工程队每天能完成绿化的面积分别是100m2、50m2;(2)设至少应安排甲队工作y天,根据题意得:0.4y+0.258,解得:y10,答:至少应安排甲队工作10天点评:此题考查了分式方程的应用,关键是分析题意,找到合适的数量关系列出方程和不等式,解分式方程时要注意检验13(2014贺州)马小虎的家距离学校1800米,一天马小虎从家去上学,出发10分钟后,爸爸发现他的数学课本忘记拿了,立即带上课本去追他,在距离学校200米的地方追上了他,已知爸爸的速度是马小虎速度的2倍,求马小虎的速度考点:分式方程的应用菁优网版权所有专题:行程问题分析:设马小虎的速度为x米/分,则爸爸的速度是2x米/分,依据等量关系:马小虎走1600米的时间=爸爸走1600米的时间+10分钟解答:解:设马小虎的速度为x米/分,则爸爸的速度是2x米/分,依题意得=+10,解得 x=80经检验,x=80是原方程的根答:马小虎的速度是80米/分点评:本题考查了分式方程的应用分析题意,找到合适的等量关系是解决问题的关键14(2014济宁)济宁市“五城同创”活动中,一项绿化工程由甲、乙两工程队承担已知甲工程队单独完成这项工作需120天,甲工程队单独工作30天后,乙工程队参与合做,两队又共同工作了36天完成(1)求乙工程队单独完成这项工作需要多少天?(2)因工期的需要,将此项工程分成两部分,甲做其中一部分用了x天完成,乙做另一部分用了y天完成,其中x、y均为正整数,且x46,y52,求甲、乙两队各做了多少天?考点:分式方程的应用;一元一次不等式组的应用菁优网版权所有专题:工程问题分析:(1)设乙工程队单独完成这项工作需要a天,由题意列出分式方程,求出a的值即可;(2)首先根据题意列出x和y的关系式,进而求出x的取值范围,结合x和y都是正整数,即可求出x和y的值解答:解:(1)设乙工程队单独完成这项工作需要a天,由题意得+36()=1,解之得a=80,经检验a=80是原方程的解答:乙工程队单独做需要80天完成;(2)甲队做其中一部分用了x天,乙队做另一部分用了y天,=1即y=80x,又x46,y52,解之,得42x46,x、y均为正整数,x=45,y=50,答:甲队做了45天,乙队做了50天点评:本题考查分式方程的应用,分析题意,找到合适的等量关系是解决问题的关键此题涉及的公式:工作总量=工作效率工作时间15(2014泰安)某超市用3000元购进某种干果销售,由于销售状况良好,超市又调拨9000元资金购进该种干果,但这次的进价比第一次的进价提高了20%,购进干果数量是第一次的2倍还多300千克,如果超市按每千克9元的价格出售,当大部分干果售出后,余下的600千克按售价的8折售完(1)该种干果的第一次进价是每千克多少元?(2)超市销售这种干果共盈利多少元?考点:分式方程的应用菁优网版权所有专题:销售问题分析:(1)设该种干果的第一次进价是每千克x元,则第二次进价是每千克(1+20%)x元根据第二次购进干果数量是第一次的2倍还多300千克,列出方程,解方程即可求解;(2)根据利润=售价进价,可求出结果解答:解:(1)设该种干果的第一次进价是每千克x元,则第二次进价是每千克(1+20%)x元,由题意,得=2+300,解得x=5,经检验x=5是方程的解答:该种干果的第一次进价是每千克5元;(2)+6009+600980%(3000+9000)=(600+1500600)9+432012000=15009+432012000=13500+432012000=5820(元)答:超市销售这种干果共盈利5820元点评:本题考查分式方程的应用,分析题意,找到合适的等量关系是解决问题的关键16(2014丽水)为了保护环境,某开发区综合治理指挥部决定购买A,B两种型号的污水处理设备共10台已知用90万元购买A型号的污水处理设备的台数与用75万元购买B型号的污水处理设备的台数相同,每台设备价格及月处理污水量如下表所示:污水处理设备A型B型价格(万元/台)mm3月处理污水量(吨/台)220180(1)求m的值;(2)由于受资金限制,指挥部用于购买污水处理设备的资金不超过165万元,问有多少种购买方案?并求出每月最多处理污水量的吨数考点:分式方程的应用;一元一次不等式的应用菁优网版权所有专题:应用题分析:(1)根据90万元购买A型号的污水处理设备的台数与用75万元购买B型号的污水处理设备的台数相同,列出m的分式方程,求出m的值即可;(2)设买A型污水处理设备x台,B型则(10x)台,根据题意列出x的一元一次不等式,求出x的取值范围,进而得出方案的个数,并求出最大值解答:解:(1)由90万元购买A型号的污水处理设备的台数与用75万元购买B型号的污水处理设备的台数相同,即可得:,解得m=18,经检验m=18是原方程的解,即m=18;(2)设买A型污水处理设备x台,则B型(10x)台,根据题意得:18x+15(10x)165,解得x5,由于x是整数,则有6种方案,当x=0时,10x=10,月处理污水量为1800吨,当x=1时,10x=9,月处理污水量为220+1809=1840吨,当x=2时,10x=8,月处理污水量为2202+1808=1880吨,当x=3时,10x=7,月处理污水量为2203+1807=1920吨,当x=4时,10x=6,月处理污水量为2204+1806=1960吨,当x=5时,10x=5,月处理污水量为2205+1805=2000吨,答:有6种购买方案,每月最多处理污水量的吨数为2000吨点评:本题考查分式方程的应用和一元一次不等式的应用,分析题意,找到合适的等量关系是解决问题的关键,此题难度不大,特别是几种方案要分析周全17(2014牡丹江)学校计划选购甲、乙两种图书作为“校园读书节”的奖品已知甲图书的单价是乙图书单价的1.5倍;用600元单独购买甲种图书比单独购买乙种图书要少10本(1)甲、乙两种图书的单价分别为多少元?(2)若学校计划购买这两种图书共40本,且投入的经费不超过1050元,要使购买的甲种图书数量不少于乙种图书的数量,则共有几种购买方案?考点:分式方程的应用;一元一次不等式组的应用菁优网版权所有专题:应用题分析:(1)总费用除以单价即为数量,设乙种图书的单价为x元,则甲种图书的单价为1.5x元,根据两种图书数量之间的关系列方程;(2)设购进甲种图书a本,则购进乙种图书(40a)本,根据“投入的经费不超过1050元,甲种图书数量不少于乙种图书的数量”列出不等式组解决问题解答:解:(1)设乙种图书的单价为x元,则甲种图书的单价为1.5x元,由题意得=10解得:x=20则1.5x=30,经检验得出:x=20是原方程的根,答:甲种图书的单价为30元,乙种图书的单价为20元;(2)设购进甲种图书a本,则购进乙种图书(40a)本,根据题意得解得:20a25,所以a=20、21、22、23、24、25,则40a=20、19、18、17、16、15共有6种方案点评:此题考查分式方程的运用,一元一次不等式组的运用,理解题意,抓住题目蕴含的数量关系解决问题18(2014襄阳)甲、乙两座城市的中心火车站A,B两站相距360km一列动车与一列特快列车分别从A,B两站同时出发相向而行,动车的平均速度比特快列车快54km/h,当动车到达B站时,特快列车恰好到达距离A站135km处的C站求动车和特快列车的平均速度各是多少?考点:分式方程的应用菁优网版权所有专题:应用题分析:设特快列车的平均速度为xkm/h,则动车的速度为(x+54)km/h,等量关系:动车行驶360km与特快列车行驶(360135)km所用的时间相同,列方程求解解答:解:设特快列车的平均速度为xkm/h,则动车的速度为(x+54)km/h,由题意,得:=,解得:x=90,经检验得:x=90是这个分式方程的解x+54=144答:特快列车的平均速度为90km/h,动车的速度为144km/h点评:本题考查了分式方程的应用,解答本题的关键是仔细审题,得到等量关系:动车行驶360km与特快列车行驶(360135)km所用的时间相同19(2014永州)某校枇杷基地的枇杷成熟了,准备请专业摘果队帮忙摘果,现有甲、乙两支专业摘果队,若由甲队单独摘果,预计6天才能完成,为了减少枇杷因气候变化等原因带来的损失,现决定由甲、乙两队同时摘果,则2天可以完成,请问:(1)若单独由乙队摘果,需要几天才能完成?(2)若有三种摘果方案,方案1:单独请甲队;方案2:同时请甲、乙两队;方案3:单独请乙对甲队每摘果一天,需支付给甲队1000元工资,乙队每摘果一天,须支付给乙队1600元工资,你认为用哪种方案完成所有摘果任务需支付给摘果队的总工资最低?最低总工资是多少元?考点:分式方程的应用菁优网版权所有专题:应用题分析:(1)设单独由乙队摘果,需要x天才能完成,根据题意列出分式方程,求出分式方程的解得到x的值,检验即可;(2)分别求出三种方案得总工资,比较即可解答:解:(1)设单独由乙队摘果,需要x天才能完成,根据题意得:2(+)=1,解得:x=3,经检验x=3是分式方程的解,且符合题意,则单独由乙队完成需要3天才能完成;(2)方案1:总工资为6000元;方案2:总工资为5200元;方案3:总工资为4800元,则方案3总工资最低,最低总工资为4800元点评:此题考查了分式方程的应用,找出题中的等量关系是解本题的关键20(2014六盘水)某校选派一部分学生参加“六盘水市马拉松比赛”,要为每位参赛学生购买一顶帽子商场规定:凡一次性购买200顶或200顶以上,可按批发价付款;购买200顶以下只能按零售价付款如果为每位参赛学生购买1顶,那么只能按零售价付款,需用900元;如果多购买45顶,那么可以按批发价付款,同样需用900元问:(1)参赛学生人数x在什么范围内?(2)若按批发价购买15顶与按零售价购买12顶的款相同,那么参赛学生人数x是多少?考点:分式方程的应用;一元一次不等式组的应用菁优网版权所有专题:应用题分析:(1)设参赛学生人数有x人,根据每位参赛学生购买1顶,只能按零售价付款,需用900元,如果多购买45顶,那么可以按批发价付款,同样需用900元,列出不等式,求出不等式的解即可;(2)根据参赛学生为x人和按批发价购买15顶与按零售价购买12顶的款相同,列出方程,求出方程的解即可解答:解:(1)设参赛学生人数有x人,由题意得,x200且x+45200,解得:155x200;答:参赛学生人数在155x200范围内;(2)根据题意得:12=15,解得:x=180,经检验x=180是原方程的解答:参赛学生人数是180人点评:本题考查了分式方程的应用,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系,列方程求解,注意检验21(2014自贡)学校新到一批理、化、生实验器材需要整理,若实验管理员李老师一人单独整理需要40分钟完成,现在李老师与工人王师傅共同整理20分钟后,李老师因事外出,王师傅再单独整理了20分钟才完成任务(1)王师傅单独整理这批实验器材需要多少分钟?(2)学校要求王师傅的工作时间不能超过30分钟,要完成整理这批器材,李老师至少要工作多少分钟?考点:分式方程的应用;一元一次不等式的应用菁优网版权所有专题:应用题分析:(1)设王师傅单独整理这批实验器材需要x分钟,则王师傅的工作效率为,根据李老师与工人王师傅共同整理20分钟的工作量+王师傅再单独整理了20分钟的工作量=1,可得方程,解出即可;(2)根据王师傅的工作时间不能超过30分钟,列出不等式求解解答:解:(1)设王师傅单独整理这批实验器材需要x分钟,则王师傅的工作效率为,由题意,得:20(+)+20=1,解得:x=80,经检验得:x=80是原方程的根答:王师傅单独整理这批实验器材需要80分钟(2)设李老师要工作y分钟,由题意,得:(1)30,解得:y25答:李老师至少要工作25分钟点评:本题考查了分式方程的应用及一元一次不等式的应用,解答本题的关键是仔细审题,找到不等关系及等量关系22(2014营口)为弘扬中华民族传统文化,某校举办了“古诗文大赛”,并为获奖同学购买签字笔和笔记本作为奖品1支签字笔和2个笔记本共8.5元,2支签字笔和3个笔记本共13.5元(1)求签字笔和笔记本的单价分别是多少元?(2)为了激发学生的学习热情,学校决定给每名获奖同学再购买一本文学类图书,如果给每名获奖同学都买一本图书,需要花费720元;书店出台如下促销方案:购买图书总数超过50本可以享受8折优惠学校如果多买12本,则可以享受优惠且所花钱数与原来相同问学校获奖的同学有多少人?考点:分式方程的应用;二元一次方程组的应用菁优网版权所有专题:销售问题分析:(1)由题意可知此题存在两个等量关系,即买1支签字笔价钱+买2个笔记本的价钱=8.5元,买2支签字笔价钱+买3个笔记本的价钱=13.5元,根据这两个等量关系,可列出方程组,再求解;(2)设学校获奖的同学有z人,根据等量关系:购买图书总数超过50本可以享受8折优惠学校如果多买12本,则可以享受优惠且所花钱数与原来相同,可列出方程,再求解解答:解:(1)设签字笔的单价为x元,笔记本的单价为y元则可列方程组,解得答:签字笔的单价为1.5元,笔记本的单价为3.5元(2)设学校获奖的同学有z人则可列方程=,解得z=48经检验,z=48符合题意答:学校获奖的同学有48人点评:考查了二元一次方程组的应用和分式方程的应用,解题关键是要读懂题目的意思,找出合适的等量关系:买一本笔记本价钱+买4支钢笔的价钱=18元,买一本笔记本价钱+买一支钢笔的价钱=6元,列出方程组,再求解23(2014内江)某汽车销售公司经销某品牌A款汽车,随着汽车的普及,其价格也在不断下降今年5月份A款汽车的售价比去年同期每辆降价1万元,如果卖出相同数量的A款汽车,去年销售额为100万元,今年销售额只有90万元(1)今年5月份A款汽车每辆售价多少万元?(2)为了增加收入,汽车销售公司决定再经销同品牌的B款汽车,已知A款汽车每辆进价为7.5万元,B款汽车每辆进价为6万元,公司预计用不多于105万元且不少于99万元的资金购进这两款汽车共15辆,有几种进货方案?(3)如果B款汽车每辆售价为8万元,为打开B款汽车的销路,公司决定每售出一辆B款汽车,返还顾客现金a万元,要使(2)中所有的方案获利相同,a值应是多少?此时,哪种方案对公司更有利?考点:分式方程的应用;一元一次不等式组的应用菁优网版权所有专题:应用题分析:(1)求单价,总价明显,应根据数量来列等量关系等量关系为:今年的销售数量=去年的销售数量(2)关系式为:99A款汽车总价+B款汽车总价105(3)方案获利相同,说明与所设的未知数无关,让未知数x的系数为0即可;多进B款汽车对公司更有利,因为A款汽车每辆进价为7.5万元,B款汽车每辆进价为6万元,所以要多进B款解答:解:(1)设今年5月份A款汽车每辆售价m万元则:,解得:m=9经检验,m=9是原方程的根且符合题意答:今年5月份A款汽车每辆售价9万元;(2)设购进A款汽车x辆则:997.5x+6(15x)105解得:6x10x的正整数解为6,7,8,9,10,共有5种进货方案;(3)设总获利为W元,购进A款汽车x辆,则:W=(97.5)x+(86a)(15x)=(a0.5)x+3015a当a=0.5时,(2)中所有方案获利相同此时,购买A款汽车6辆,B款汽车9辆时对公司更有利点评:本题考查分式方程和一元一次不等式组的综合应用,找到合适的等量关系及不等关系是解决问题的关键24(2013三明)兴发服装店老板用4500元购进一批某款T恤衫,由于深受顾客喜爱,很快售完,老板又用4950元购进第二批该款式T恤衫,所购数量与第一批相同,但每件进价比第一批多了9元(1)第一批该款式T恤衫每件进价是多少元?(2)老板以每件120元的价格销售该款式T恤衫,当第二批T恤衫售出时,出现了滞销,于是决定降价促销,若要使第二批的销售利润不低于650元,剩余的T恤衫每件售价至少要多少元?(利润=售价进价)考点:分式方程的应用;一元一次不等式的应用菁优网版权所有分析:(1)设第一批T恤衫每件进价是x元,则第二批每件进价是(x+9)元,再根据等量关系:第二批进的件数=第一批进的件数可得方程;(2)设剩余的T恤衫每件售价y元,由利润=售价进价,根据第二批的销售利润不低于650元,可列不等式求解解答:解:(1)设第一批T恤衫每件进价是x元,由题意,得=,解得x=90,经检验x=90是分式方程的解,符合题意答:第一批T恤衫每件的进价是90元;(2)设剩余的T恤衫每件售价y元由(1)知,第二批购进=50(件)由题意,得12050+y504950650,解得y80答:剩余的T恤衫每件售价至少要80元点评:本题考查分式方程、一元一次不等式的应用,关键是根据数量作为等量关系列出方程,根据利润作为不等关系列出不等式求解25(2013贺州)某校为了丰富学生的校园生活,准备购进一批篮球和足球其中篮球的单价比足球的单价多40元,用1500元购进的篮球个数与900元购进的足球个数相等(1)篮球和足球的单价各是多少元?(2)该校打算用1000元购买篮球和足球,问恰好用完1000元,并且篮球、足球都买有的购买方案有哪几种?考点:分式方程的应用;二元一次方程的应用菁优网版权所有分析:(1)首先设足球单价为x元,则篮球单价为(x+40)元,根据题意可得等量关系:1500元购进的篮球个数=900元购进的足球个数,由等量关系可得方程=,再解方程可得答案;(2)设恰好用完1000元,可购买

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论