



全文预览已结束
下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
如何由递推公式求通项公式高中数学递推数列通项公式的求解是高考的热点之一,是一类考查思维能力的题型,要求考生进行严格的逻辑推理。找到数列的通项公式,重点是递推的思想:从一般到特殊,从特殊到一般;化归转换思想,通过适当的变形,转化成等差数列或等比数列,达到化陌生为熟悉的目的。下面就递推数列求通项的基本类型作一个归纳,以供参考。类型一: 或 分析:利用迭加或迭乘方法。即:或例1.(1) 已知数列满足,求数列的通项公式。 (2)已知数列满足,求数列的通项公式。解:(1)由题知: (2) 两式相减得:即: 类型二:分析:把原递推公式转为:,再利用换元法转化为等比数列求解。例2.已知数列中,求的通项公式。 解:由 可转化为: 令 即 类型三:分析:在此只研究两种较为简单的情况,即是多项式或指数幂的形式。(1)是多项式时转为,再利用换元法转为等比数列(2)是指数幂:若时则转化为,再利用换元法转化为等差数列若时则转化为例3.(1)设数列中,求的通项公式。 (2)设数列中,求的通项公式。 解:(1)设 与原式比较系数得: 即 令 (2)设展开后得:对比得:令类型四:分析:这种类型一般是等式两边取对数后得:,再采用类型二进行求解。例4.设数列中,求的通项公式。 解:由,两边取对数得: 设展开后与上式对比得: 令,则 ,即 也即类型五: 分析:这种类型一般是等式两边取倒数后再换元可转化为类型二。 例5.已知数列
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 广东青年职业学院《CAD设计》2024-2025学年第一学期期末试卷
- 赤峰应用技术职业学院《学前儿童社会教育》2024-2025学年第一学期期末试卷
- 吉安幼儿师范高等专科学校《义务教育阶段教学设计与案例研究》2024-2025学年第一学期期末试卷
- 湖南工业职业技术学院《景观生态学》2024-2025学年第一学期期末试卷
- 2025年新型高效电池项目立项申请报告模板
- 2025版电商平台技术服务合同范本示例
- 二零二五版国际建筑工程施工合同(体育场馆)
- 二零二五年度亲子早教中心保育员劳动合同
- 二零二五年度农业贷款担保承诺书编制指南
- 2025版矿山车辆运输安全责任追究与整改合同规范
- 免疫05-第五章-免疫凝集试验
- 2025年中国东方航空集团招聘笔试参考题库含答案解析
- C919机组培训-导航系统
- 高考地理易错题专练:地球运动易错突破(4大易错)含答案及解析
- 2025年上半年上海海港综合经济开发区招考易考易错模拟试题(共500题)试卷后附参考答案
- 2024ESC心房颤动管理指南解读
- 2024年度礼品设计创新研发合同3篇
- 树木砍伐用工合同模板
- 小学班主任资料-家校联系本
- 氧化铝制取全套教学教程整套课件全书电子教案
- 安徽省涡阳县2023-2024学年八年级下学期期末考试语文试题
评论
0/150
提交评论