



全文预览已结束
下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
3.4.1 基本不等式的证明(3)班级 姓名 【课前预习】一、复习回顾1.基本不等式:若,则 ,当且仅当 时,取“=”。常用变形形式:(1)若则 ,当且仅当 时,取“=”;(2)若则 ,当且仅当 时,取“=”;(3)若,则 ,当且仅当 时,取“=”;(4)若,则 ,当且仅当 时,取“=”;(5)若,则 ,当且仅当 时,取“=”。2.若是正数,(1)如果积是定值p , 那么当且仅当 时, 和有最小值 ;(2)如果和是定值s , 那么当且仅当 时, 积有最大值 。应用基本不等式求最值,要注意满足以下三个条件:一,二 ,三 。说明:1.应用基本不等式求函数最值时,各项必须为正数,最后所得到的值必须是一个定值,等号必须能够取到。2.只有等号能够取到时才能应用基本不等式求最值,否则只能利用函数单调性等其它方法求最值。3.在求某些函数的最值时,首先应将所给表达式进行恰当的变形与转化,然后再使用基本不等式求最值。4若在同一个等式中使用两次基本不等式求最值,一定要注意等号必须能够同时取到。【概念运用】1. 如果 , 那么当且仅当 , 时,有最 值为 。 2已知 , 且, 那么当且仅当 , 时,有最 值为 。3. 已知,求证:。【典型例题】例1 (1)已知,且,求的最小值;(2)已知,且+=1,求的最小值。例2 已知,且。(1)求的最小值;(2)求的最小值。例3 (1)若是正实数,求的最大值;(2)已知,求的最大值。基本不等式的证明(3)课堂作业【课堂作业】1. 已知,且,求的最小值。2已知正数满足,求的最小值。3已知,且,求的最小值。4若正数满足。(1)求的最小值;(2)求的最小值。【练习反馈】1.若,则的最小值为 。2. 已知 ,且,则的最小值是 。3已知,则的最小值是 。4已知,且,则的最小值为 。5若成等差数列,成等比数列,则的最小值是 。6已知,+=1,则的最小值为 。7已知,函数的最大值为 。8
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025内蒙古呼和浩特市武川博物馆招募志愿者20人模拟试卷有完整答案详解
- 2025年湖南永州市零陵区人民法院招聘7名编外聘用制审判辅助人员模拟试卷及答案详解(必刷)
- 2025北京故宫文化遗产保护有限公司招聘10人模拟试卷有答案详解
- 2025黑龙江哈尔滨工程大学后勤基建处前期采购办公室管理岗位招聘1人模拟试卷及完整答案详解1套
- 2025广东佛山市南海区狮山镇镇属企业工作人员招聘1人考前自测高频考点模拟试题参考答案详解
- 2025年合肥合燃华润燃气有限公司社会招聘2人模拟试卷附答案详解(典型题)
- 2025年度中国农业科学院哈尔滨兽医研究所公开招聘18人模拟试卷含答案详解
- 2025黑龙江鸡西市城子河区招聘民兵军事训练教练员2人考前自测高频考点模拟试题附答案详解(黄金题型)
- 2025广东佛山市禅城区国有资产监督管理局下属企业招聘2人模拟试卷及答案详解一套
- 2025国家卫生健康委卫生发展研究中心招聘5人(第一批次)考前自测高频考点模拟试题及参考答案详解
- 国开2025年《行政领导学》形考作业1-4答案
- 中铝中州矿业有限公司禹州市浅井铝土矿矿山地质环境保护和土地复垦方案
- 天津大学毕业论文答辩PPT模板
- 小学五六年级青春期女生健康心理讲座PPT
- 顶管沉井专项施工方案
- GA 1167-2014探火管式灭火装置
- 2022年国家电网有限公司特高压建设分公司校园招聘笔试试题及答案解析
- 文物保护施工方案
- 建筑施工现场消防专题培训课件
- 高中通用技术(相框)设计方案
- 医院老院区病房楼改造工程案例课件
评论
0/150
提交评论