



免费预览已结束,剩余1页可下载查看
下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
第一抽屉原理原理1 把多于n个的物体放到n个抽屉里,则至少有一个抽屉里有2个或2个以上的物体。证明(反证法):如果每个抽屉至多只能放进一个物体,那么物体的总数至多是n,而不是题设的n+k(k1),这不可能。原理2 把多于mn个的物体放到n个抽屉里,则至少有一个抽屉里有m+1个或多于m+1个的物体。证明(反证法):若每个抽屉至多放进m个物体,那么n个抽屉至多放进mn个物体,与题设不符,故不可能。第二抽屉原理把(mn1)个物体放入n个抽屉中,其中必有一个抽屉中至多有(m1)个物体。证明(反证法):若每个抽屉都有不少于m个物体,则总共至少有mn个物体,与题设矛盾,故不可能。抽屉原理,又叫狄利克雷原则,它是一个重要而又基本的数学原理,应用它可以解决各种有趣的问题,并且常常能够得到令人惊奇的结果,许多看起来相当复杂,甚至无从下手的问题,利用它能很容易得到解决那么,什么是抽屉原理呢?我们先从一个最简单的例子谈起 将三个苹果放到两只抽屉里,想一想,可能会有什么样的结果呢?要么在一只抽屉里放两个苹果,而另一只抽屉里放一个苹果;要么一只抽屉里放有三个苹果,而另一只抽屉里不放这两种情况可用一句话概括:一定有一只抽屉里放入了两个或两个以上的苹果虽然哪只抽屉里放入至少两个苹果我们无法断定,但这是无关紧要的,重要的是有这样一只抽屉放入了两个或两个以上的苹果 如果我们将上面问题做一下变动,例如不是将三个苹果放入两只抽屉里,而是将八个苹果放到七只抽屉里,我们不难发现,这八个苹果无论以怎样的方式放入抽屉,仍然一定会有一只抽屉里至少有两个苹果。通过上面的分析,我们可以将上面问题中包含的基本原理写成下面的一般形式 抽屉原理(一):把多于几个的元素按任一确定的方式分成几个集合,那么一定至少有一个集合中,至少含有两个元素 应用抽屉原理来解题,首先要审题,即分清什么作为“元素”,什么作为“抽屉”;其次要根据题目的条件和结论,结合有关的数学知识,来设计抽屉,在应用抽屉原理解题时,正确地设计抽屉是解题的关键 例1 有红、黄、绿三种颜色的小球各四颗混放在一只盒子里,为了保证一次能取到两颗颜色相同的小球,一次至少要取几颗? A、3 B、4 C、5 D、6分析:将三种不同的颜色看作三个抽屉,为了保证一次能取到两颗颜色相同的小球,即要求至少有两颗小球出自同一抽屉,因此一次至少要取4颗小球 例2 某班有30名学生,班里建立一个小书库,同学们可以任意借阅,问小书库中至少要有多少本书,才能保证至少有一个同学一次能至少借到两本书? A、28 B、29 C、30 D、31分析:将30名同学看作30个“抽屉”,而将书看作“苹果”,根据抽屉原理,“苹果”数目要比“抽屉”数目大,才能保证至少有一个抽屉里有两个或两个以上的“苹果”,因此,小书库中至少要有31本书,才能保证至少有一位同学一次能借到两本或两本以上的图书。注:以上例题中有关“抽屉”和“苹果”的选择比较简单但在很多情况下,“抽屉”和“苹果”并非一下子就能选好,而是要进行认真的分析与思考才能找到,有时“抽屉”和“苹果”的数目也不是现成的,需要我们通过分析,才能计算出结果 例3 红色,黄色,绿色的球各6个,混杂地放在一起,要想闭着眼睛从中取出颜色不同的两对球,问至少要取多少才能保证达到要求? A、6 B、7 C、8 D、9红色、黄色、绿色的球各6个,分析:这个问题不能象前面两个例题那样一下就能找到“抽屉”和“苹果”,由于各种颜色的球混合在一起,我们又是闭着眼睛取球,这样,如果取出的球数不多于6个,就有可能取出的球都是同一种颜色,这是最不利的情况,因此,要保证取出颜色不同的两对球,取出的球数必须超过6个,为了保证达到要求,我们从最坏的情况出发,取出的球中有6个都是同一种颜色,这样,问题就变成了怎样才能使余下的球中保证有两个是同颜色的这时剩下的颜色只有两种,把两种颜色当作两只“抽屉”,而将球当作“苹果”,根据抽屉原则,只要有三个球,就能保证其中有两个是同颜色的,即在最不利的情况下,只要取出9个球,就能保证其中一定有两对颜色不同的小球,在其它情况下,就更无问题了。 例4 一副扑克牌有四种花色,每种花色各有13张,现在从中任意抽牌。问最少抽几张牌,才能保证有4张牌是同一种花色的?A12 B13 C15 D16分析:因为扑克牌一共有四种花色,当每次至少抽出4张牌时才可以保证每种花色一样一张,按此类推,当取到12张牌时,就可以保障每种花色一样三张,所以当抽取第13张牌时,无论是什么花色,都可以至少保障有4张牌的同一种花色。例5 从一副完整的扑克牌中至少抽出( )张牌才能保证至少6张牌花色相同A、21 C、22 C、23 D、24分析:最坏的情况,第一次抽出大小王和4种不同的花色,第二次抽出四种不同的花色,连续5次这时有22张牌,再任意抽一张出来就能保证至少6张牌花色相同。例6 从1、2、3、4、12这12个自然数中,至少任选几个,就可以保证其中一定包括两个数,他们的差是7?A7B10C9D8分析:在这12个自然数中,差是7的自然数有以下5对:12,511,410,39,28,1。另外,还有2个不能配对的数是67。通过抽屉原理,可以构造7个抽屉。只要有两个数是取自同一个抽屉,那么它们的差就等于7。这7个抽屉可以表示为12,511,410,39,28,167,显然从7个抽屉中取8个数,则一定可以使有两个数字来源于同一个抽屉,也就是差为7,所以选择D。 抽屉原则(二):把多于mn个物体放到n个抽屉里,那么一定有一个抽屉里有m1个或者m1个以上的物体 例1 在一次钓鱼比赛中共有100人参加,比赛结束后,裁判宣布最少的钓了7条鱼,最多的钓了20条鱼,问这100人中,至少有几个人钓的鱼一样多? A、7 B、8 C、9 D、10分析:这100个人所钓的鱼按条数分为14种情况,将每一种情况看作一个抽屉,将100个人任意放入这14个抽屉中,由于100=7142,由抽屉原则二可知,至少有8个人钓的鱼条数一样。这100个人所钓的鱼按条数分为14种情况,例2 某班学生40人开展读书比赛活动,他们从学校图书馆借书,要保证其中至少有一人一次能借到5本书,图书馆至少应为这个班准备多少本书? A、160 B、161 C、162 D、163抽屉原理:分析:将这个班的40个人看作40个“抽屉”,将图书馆为他们准备的书看作“苹果”,要使40个抽屉中至少有一个抽屉里放入了5个苹果,根据抽屉原则二可知,苹果数至少应为404+1,即:图书馆至少应为这个班的学生准备161本书。例3 某单位购进一批桔子共计90箱,每箱至少110个,至多138个,现将桔子数相同的箱子作为一组,箱子数最多的一组至少有几箱桔子? A、1 B、2 C、3 D、4分析:根据题意,由于每箱至少110个,至多138个,按每箱的桔子个数,可构造29个“抽屉”,将90个元素放入到29个抽屉中,9029*3+3,由抽屉原则二可知,箱子数最多的一组,至少有4箱桔子 例4 某年级共有学生300人,年龄最大的15岁,最小的13岁,其中至少有多少人
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年航空航天企业飞行领航员安全生产知识考试试题及答案
- 第4课 共同开发建设祖国说课稿-2025-2026学年中华民族大团结-中华民族大团结
- 高校和社区服务合同模板(3篇)
- 高铁站土建施工合同(3篇)
- 安徽司法考试试题及答案
- 河北经贸大学校园汽车租赁服务及车辆安全检查合同
- 本科毕业生就业服务及权益保障协议
- 2025公务员线上面试题及答案
- 舞蹈生专业测试题及答案
- 祖国我爱你教学设计课件
- 公安援疆工作总结
- 第8课《网络新世界》第一课时-统编版《道德与法治》四年级上册教学课件
- 2025秋人教版美术七年级第一单元 峥嵘岁月第1课 情感表达2
- 2025年审计部招聘考试模拟题及答案详解
- 2025年招聘市场年中洞察报告-瀚纳仕
- Bowtie安全分析培训课件
- 退役军人优抚政策课件
- 财务遴选笔试题及答案
- (2025秋新版)人教版二年级数学上册全册教案(教学设计)
- 六年级上册音乐课教案
- 肿瘤病人疼痛评估与干预策略
评论
0/150
提交评论