



免费预览已结束,剩余1页可下载查看
下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
江西省九江实验中学高中数学 第一章 三角函数教案 新人教a版必修4一、三角函数的基本概念1.角的概念的推广(1)角的分类:正角(逆转) 负角(顺转) 零角(不转)(2)终边相同角:(3)直角坐标系中的象限角与坐标轴上的角.2.角的度量(1)角度制与弧度制的概念(2)换算关系:(3)弧长公式: 扇形面积公式: 同角三角函数的基本关系式:平方关系;商式关系;倒数关系;。(一) 关于公式的深化;如:;注:1、诱导公式的主要作用是将任意角的三角函数转化为角的三角函数。2、主要用途:a) 已知一个角的三角函数值,求此角的其他三角函数值(要注意题设中角的范围,用三角函数的定义求解会更方便);b) 化简同角三角函数式;证明同角的三角恒等式。三、两角和与差的三角函数(一)两角和与差公式(1)求值“给角求值”:给出非特殊角求式子的值。仔细观察非特殊角的特点,找出和特殊角之间的关系,利用公式转化或消除非特殊角“给值求值”:给出一些角得三角函数式的值,求另外一些角得三角函数式的值。找出已知角与所求角之间的某种关系求解 “给值求角”:转化为给值求值,由所得函数值结合角的范围求出角。 “给式求值”:给出一些较复杂的三角式的值,求其他式子的值。将已知式或所求式进行化简,再求之三角函数式常用化简方法:切割化弦、高次化低次注意点:灵活角的变形和公式的变形, 重视角的范围对三角函数值的影响,对角的范围要讨论(2)化简化简目标:项数习量少,次数尽量低,尽量不含分母和根号化简三种基本类型:根式形式的三角函数式化简、多项式形式的三角函数式化简、分式形式的三角函数式化简化简基本方法:用公式;异角化同角;异名化同名;化切割为弦;特殊值与特殊角的三角函数值互化。(3)证明化繁为简法左右归一法变更命题法条件等式的证明关键在于分析已知条件与求证结论之间的区别与联系。无论是化简还是证明都要注意:(1)角度的特点(2)函数名的特点(3)化切为弦是常用手段(4)升降幂公式的灵活应用四、三角函数的性质y=sinxy=cosxy=tanxy=cotx图象定义域xrxrxk+(kz)xk(kz)值域y1,1y1,1yryr奇偶性奇函数偶函数奇函数奇函数单调性在区间2k,2k+上都是增函数在区间2k+,2k+上都是减函数在区间2k2k上都是增函数在区间2k,2k+上都是减函数在每一个开区间(k, k+)内都是增函数在每一个开区间(k,k+)内都是减函数周 期t=2t=2t=t=对称轴无无对称中心五、已知三角函数值求角1、反三角概念:(1)若sinx=a 则x=arcsina,说明:a0,arcsina为锐角; a=0,arcsina=0; a0,arccosa为锐角; a=0,arccosa=900; a0,arctana为锐角; a=0,arctana=0; a,而arctan(-3)=-arctan3.而sin(arcsin不存在。2、反三角关系:(1) arcsin(-x)=-arcsinax; arctan(-x)=arctanx; arcos(-x)=-arccosx由此可知:是匠函数,而非奇非偶。(2) arcsinx+arccosx=3、时求角:sinx=a六、三角函数的最值(1) 配方法求最值主要是利用三角函数理论及三角函数的有界性,转化为二次函数在闭区间上的最值问题,如求函数的最值,可转化为求函数上的最值问题。(2) 化为一个角的三角函数,再利用有界性求最值:(3) 换元法求
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年验船师考试(C级船舶检验专业实务)综合试题及答案一
- 北京市门头沟区2024-2025学年八年级上学期第一次月考地理试题及答案
- 北京市门头沟区2023-2024学年九年级下学期中考适应性训练(三模)道德与法制试题含参考答案
- 2025年高级无人机植保操作员实操模拟题与理论知识点解析
- 2026届漯河市重点中学化学高一上期中统考模拟试题含解析
- 公务员英雄面试题及答案
- 2025年项目管理办公室专员招聘考试模拟题
- 江苏泰兴一中2026届化学高三第一学期期末综合测试模拟试题含解析
- 2026届新疆乌鲁木齐市高二化学第一学期期中检测试题含解析
- 2025年法律顾问招聘面试预测题与法律实务经验
- 华为荣誉激励管理办法
- 2025至2030全球及中国实验室PH电极行业发展趋势分析与未来投资战略咨询研究报告
- 相控阵超声检测技术及应用
- 儿科血小板减少的护理查房
- 林下生态养鸡技术课件
- 第四单元整本书阅读《红岩》课件 2025-2026学年统编版语文八年级上册
- 高中语文课程标准测试题答案
- 孕期健康方式课件
- 特色小吃街商业运营与管理合作协议
- 金提炼过程中的贵金属综合回收利用考核试卷
- 膏药生产现场管理制度
评论
0/150
提交评论