符号图论文:符号图的零维数.doc_第1页
符号图论文:符号图的零维数.doc_第2页
符号图论文:符号图的零维数.doc_第3页
符号图论文:符号图的零维数.doc_第4页
全文预览已结束

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

符号图论文:符号图的零维数【中文摘要】图的零维数定义为其邻接谱中零特征值的重数.若图的零维数大于零,则称该图是奇异的.图的零维数研究起源于量子化学领域.二十世纪五十年代,Longuet-Higgins发现:对于一个二部图,若其零维数大于零,则这种图所代表的交替烃分子结构是不稳定的.1957年,Collatz等人在研究分子结构稳定性时提出了刻画奇异图(或非奇异图)问题.在过去的三十年里,图的零维数问题引起了诸多化学家和数学家的兴趣,成为谱图理论一个热点研究问题.在图的每条边上指定一个正号(+)或负号(-),所得的图被称为符号图.Harary在研究社会心理学方面首先引入符号图来研究社会平衡理论.随后,诸多图论问题被拓展到符号图中去.本文讨论了符号图的零维数问题,得到了带有悬挂树的符号图零维数分解定理.利用该定理:刻画了零维数分别为n-2,n-3,n-4,n-5,n-6,n-7的单圈符号图,零维数分别为n-2,n-3的双圈符号图,以及零维数为n-4的带有悬挂树的双圈符号图.本文的组织结构如下.第一章,我们首先介绍邻接谱理论和零维数问题的以及本文所用到的一些概念和术语,随后介绍了本文的研究问题与进展,以及本文的主要结论.第二章首先给出了带有悬挂数的符号图零维数分解定理,随后刻画了零维数分别为n-2,n-3,n-4,n-5,n-6,n-7单圈符号图.第三章刻画了零维数分别为n-2,n-3的双圈符号图,以及零维数为n-4的带有悬挂树的双圈符号图.【英文摘要】The nullity of a graph is defined to be the multiplicity of the zero eigen-value in the adjacency spectrum of the graph, which origins from quantum chemistry. A graph is called nonsingular if its nullity is positive. In the fifties of last century, Longuet-Higgins found:If G is biparite and its nullity is positive, the alternant hydrocarbon corresponding to G is unstable. In 1957, Collatz et.al. first posed the problem of characterizing nonsingular or singular graphs for discussing the stability of the molecular structure. In past thirty years, this problem has received a lot of attention in chemistry and mathematics, has been a hot topic in spectral graph theory.A signed graph is a graph with a sign(+or-) attached to each of its edges. Signed graphs were introduced by Harary in connection with the study of the theory of social balance in social psychology. Subsequently, a number of problems of graphs were extended to those of signed graphs. In this thesis, we introduce the nullity of signed graphs, and give some results on the nullity of signed graphs with pendant trees. Using these results, we characterize the unicyclic signed graphs of order n with nullity n-2, n-3, n-4, n-5, n-6, n-7, respectively, the bicyclic signed graphs of order n with nullity n-2, n-3, respectively, and the bicyclic signed graphs of order n and nullity n-4 which contains pendant trees.This thesis is organized as follows. In Chapter one, we introduce a brief background of the adjacency spectral theory and the nullity of graphs, give some notations which we will be used in the following sections, introduce the problems and its development, and list the main results we obtained in this thesis. In Chapter two, we give the nullity decomposition theorem of signed graphs with pendant trees and characterize the unicyclic signed graphs of order n with nullity n-2,n-3,n-4,n-5,n-6,n-7, respectively. In final Chapter, the classification of bicyclic graphs with pendant trees is given. Using this classification and nullity decomposition theorem, we characterize the bicyclic signed graphs of order n with nullity n-2,n-3, respectively, and characterize the bicyclic signed graphs of order n and nullity n-4 which contains pendant trees.【关键词】符号图 单圈图 双圈图 零维数 悬挂树【英文关键词】Signed graph unicyclic graph bicyclic graph nullity pendant tree【目录】符号图的零维数摘要3-4ABSTRACT4-5符号说明6-8第一章 引言8-191.1 研究背景8-

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论