高中数学 第三章 概率 3.3.1 几何概型课件 新人教A版必修3(1).ppt_第1页
高中数学 第三章 概率 3.3.1 几何概型课件 新人教A版必修3(1).ppt_第2页
高中数学 第三章 概率 3.3.1 几何概型课件 新人教A版必修3(1).ppt_第3页
高中数学 第三章 概率 3.3.1 几何概型课件 新人教A版必修3(1).ppt_第4页
高中数学 第三章 概率 3.3.1 几何概型课件 新人教A版必修3(1).ppt_第5页
已阅读5页,还剩23页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

3 3几何概型 3 3 1几何概型 一 几何概型的概念及特点 问题思考 1 计算随机事件发生的概率 我们已经学习了哪些方法 提示 1 通过做试验或用计算机模拟试验等方法得到事件发生的频率 用频率估计概率 2 利用古典概型的概率公式计算事件发生的概率 2 在现实生活中 我们常常会遇到试验的所有可能结果是无穷多的情况 例如 一个正方形方格内有一内切圆 往这个方格中投一个石子 求石子落在圆内的概率 这个试验还能不能用古典概型的概率公式来计算事件发生的概率呢 若没有人为因素 每个试验结果出现的可能性相等吗 提示不能 这个试验可能出现的结果是无限多个 相等 3 如图 有两个转盘 甲乙两人玩转盘游戏 规定当指针指向b区域时 甲获胜 否则乙获胜 在这两种情况下甲获胜的概率分别是多少 4 问题3中每个扇形区域对应的圆弧的长度 或扇形的面积 和它所在位置都是可以变化的 从结论来看 甲获胜的概率与字母b所在扇形区域的哪个因素有关 与哪个因素无关 提示与扇形区域对应的弧长 或面积 有关 而与扇形区域所在的位置无关 5 玩转盘游戏中所求事件的概率就是几何概型 你能给几何概型下个定义吗 几何概型有哪两个基本特征 提示如果每个事件发生的概率只与构成该事件区域的长度 面积或体积 成比例 则称这样的概率模型为几何概率模型 简称为几何概型 几何概型的基本特征 1 可能出现的结果有无限多个 2 每个结果发生的可能性相等 6 问题3中 在两种情况下甲获胜的概率分别是怎么求出来的 7 问题2中 石子落在圆内的概率应该怎么求 提示把正方形的边长记为2 则其面积为2 2 4 其内切圆得半径为1 内切圆的面积为 12 二 几何概型的概率公式 问题思考 还有没有其他类型的几何概型 如何求其某一随机事件的概率呢 1 在装有5升水的水族箱中放入一个身长约1mm的小型水母 现从中随机取出1升水 那么这1升水中含有水母的概率是多少 你是怎样计算的 提示概率为 由于水母出现在这5升水中的位置有无限多个结果且每个结果发生的可能性相等 因此随机取出的1升水中含有水母的概率为1升水的体积除以5升水的体积 2 根据上述几个问题中求概率的方法 你能归纳出在几何概型中 事件a的概率的计算公式吗 3 做一做 一只蚂蚁在如图所示的地板砖 除颜色不同外 其余全部相同 上爬来爬去 它最后停留在黑色地板砖 阴影部分 上的概率是 解析 设每块地板砖的面积为1 则总面积为12 其中黑色地板砖面积为4 所以所求概率为答案 a 思考辨析判断下列说法是否正确 正确的在后面的括号内打 错误的打 1 几何概型中事件发生的概率与位置 形状有关 2 几何概型在一次试验中可能出现的基本事件有有限个 3 几何概型中每个基本事件的发生具有等可能性 4 概率为0的事件不一定是不可能事件 概率为1的事件不一定会发生 答案 1 2 3 4 探究一 探究二 探究三 思维辨析 例1 如图 在 abc的边ac上任取一点p 求使 abp的面积小于 abc面积的一半的概率 分析 abp与 abc有相同的底ab 要使 abp的面积小于 abc面积的一半 只需点p到ab的距离小于点c到ab距离的一半 探究一 探究二 探究三 思维辨析 反思感悟1 如果试验的结果构成的区域的几何度量可用长度表示 则其概率的计算公式为 2 在求解与长度有关的几何概型时 首先找到几何区域d 这时区域d可能是一条线段或几条线段或曲线段 然后找到事件a发生对应的区域d 在找d的过程中 确定边界点是问题的关键 但边界点是否取到却不影响事件a的概率 探究一 探究二 探究三 思维辨析 变式训练1 1 取一根长度是3m的绳子 拉直后在任意位置剪断 那么剪得的两段中有一段大于2m的概率是 2 在 0 1 内任取一实数a 使3a 1 0的概率是 探究一 探究二 探究三 思维辨析 例2 如图 在矩形区域abcd的a c两点处各有一个通信基站 假设其信号的覆盖范围分别是扇形区域ade和扇形区域cbf 该矩形区域内无其他信号来源 基站工作正常 若在该矩形区域内随机地选一地点 则该地点无信号的概率是 探究一 探究二 探究三 思维辨析 答案 a 探究一 探究二 探究三 思维辨析 反思感悟1 与面积有关的几何概型的概率公式如果试验的结果所构成的区域的几何度量可用面积表示 则其概率的计算公式为 2 解 与面积相关的几何概型问题的三个关键点 1 根据题意确认是不是与面积有关的几何概型问题 2 找出或构造出随机事件对应的几何图形 利用图形的几何特征计算相关面积 3 套用公式 从而求得随机事件的概率 探究一 探究二 探究三 思维辨析 变式训练2在两直角边长为2 3的直角三角形内 任取一点 求该点距任意一个顶点的距离小于1的概率 探究一 探究二 探究三 思维辨析 例3 有一个底面圆的半径为1 高为2的圆柱 点o为这个圆柱底面圆的圆心 在这个圆柱内随机取一点p 求点p到点o的距离大于1的概率 分析先确定出点p所在的空间 并求出该空间的体积 用它与圆柱的体积相除即得所求事件的概率 探究一 探究二 探究三 思维辨析 反思感悟如果试验结果所构成的区域的几何度量可用体积表示 则其概率的计算公式为 探究一 探究二 探究三 思维辨析 变式训练3在棱长为3的正方体内任取一点 求这个点到各个面的距离均大于1的概率 解 依题意 在棱长为3的正方体内任意取一点 这点到各面的距离都大于1 则满足题意的区域为 位于正方体中心的一个棱长为1的小正方体 其体积v1 13 1 探究一 探究二 探究三 思维辨析 忽略无限个基本事件的可能性判断而致误 典例 在等腰直角三角形abc中 过直角顶点c在 acb内部作一条射线cm 与线段ab交于点m 求am ac的概率 探究一 探究二 探究三 思维辨析 以上错解中都有哪些错误 出错的原因是什么 你如何订正 你如何防范 错因分析本题错误解答的原因是把角度问题错误地转化成了线段长度问题 探究一 探究二 探究三 思维辨析 防范措施当涉及射线的转动 扇形中有关落点区域问题时 常以角的大小作为区域量度来计算概率 切不可用线段代替 否则会导致基本事件发生的可能性不相等 探究一 探究二 探究三 思维辨析 1 2 3 4 1 已知函数f x x2 x 2 x 5 5 则任取一点x0使f x0 0的概率为 a 0 5b 0 6c 0 7d 0 8解析 由x2 x 2 0得x 2或x0的概率为答案 c 1 2 3 4 2 两根电线杆相距100m 若电线遭受雷击 且雷击点距电线杆10m之内时 电线杆上的输电设备将受损 则遭受雷击时设备受损的概率为 a 0 1b 0 2c 0 05d 0 5解析 如图 两根电线杆相距mn 100m mp 10m qn 10m 则当雷击点在mp或qn范围上时 设备受损 故设备受损的概率为p 0 2 答案 b 1 2 3 4 3 方程x2 x n 0 n 0 1 有实根的概率为 解析 方程x2 x n 0 n 0 1

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

最新文档

评论

0/150

提交评论