高考数学必胜秘诀在哪.doc_第1页
高考数学必胜秘诀在哪.doc_第2页
高考数学必胜秘诀在哪.doc_第3页
高考数学必胜秘诀在哪.doc_第4页
高考数学必胜秘诀在哪.doc_第5页
已阅读5页,还剩9页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

高考数学必胜秘诀在哪?十四、高考数学选择题的解题策略 数学选择题在当今高考试卷中,不但题目多,而且占分比例高,即使今年江苏试题的题量发生了一些变化,选择题由原来的12题改为10题,但其分值仍占到试卷总分的三分之一。数学选择题具有概括性强,知识覆盖面广,小巧灵活,且有一定的综合性和深度等特点,考生能否迅速、准确、全面、简捷地解好选择题,成为高考成功的关键。解答选择题的基本策略是准确、迅速。准确是解答选择题的先决条件,选择题不设中间分,一步失误,造成错选,全题无分,所以应仔细审题、深入分析、正确推演、谨防疏漏,确保准确;迅速是赢得时间获取高分的必要条件,对于选择题的答题时间,应该控制在不超过40分钟左右,速度越快越好,高考要求每道选择题在13分钟内解完,要避免“超时失分”现象的发生。高考中的数学选择题一般是容易题或中档题,个别题属于较难题,当中的大多数题的解答可用特殊的方法快速选择。解选择题的基本思想是既要看到各类常规题的解题思想,但更应看到选择题的特殊性,数学选择题的四个选择支中有且仅有一个是正确的,因而,在解答时应该突出一个“选”字,尽量减少书写解题过程,要充分利用题干和选择支两方面提供的信息,依据题目的具体特点,灵活、巧妙、快速地选择解法,以便快速智取,这是解选择题的基本策略。(一)数学选择题的解题方法1、直接法:就是从题设条件出发,通过正确的运算、推理或判断,直接得出结论再与选择支对照,从而作出选择的一种方法。运用此种方法解题需要扎实的数学基础。例1、某人射击一次击中目标的概率为0.6,经过3次射击,此人至少有2次击中目标的概率为()解析:某人每次射中的概率为0.6,3次射击至少射中两次属独立重复实验。 故选A。例2、有三个命题:垂直于同一个平面的两条直线平行;过平面的一条斜线l有且仅有一个平面与垂直;异面直线a、b不垂直,那么过a的任一个平面与b都不垂直。其中正确命题的个数为( )A0 B1 C2 D3解析:利用立几中有关垂直的判定与性质定理对上述三个命题作出判断,易得都是正确的,故选D。例3、已知F1、F2是椭圆 + =1的两焦点,经点F2的的直线交椭圆于点A、B,若|AB|=5,则|AF1|+|BF1|等于( )A11 B10 C9 D16解析:由椭圆的定义可得|AF1|+|AF2|=2a=8,|BF1|+|BF2|=2a=8,两式相加后将|AB|=5=|AF2|+|BF2|代入,得|AF1|+|BF1|11,故选A。例4、已知 在0,1上是 的减函数,则a的取值范围是()A(0,1) B(1,2)C(0,2) D2,+)解析:a0,y1=2-ax是减函数,在0,1上是减函数。a1,且2-a0,1atancot( ),则()A( , ) B( ,0)C(0, ) D( , )解析:因 ,取= 代入sintancot,满足条件式,则排除A、C、D,故选B。例6、一个等差数列的前n项和为48,前2n项和为60,则它的前3n项和为( )A24 B84 C72 D36解析:结论中不含n,故本题结论的正确性与n取值无关,可对n取特殊值,如n=1,此时a1=48,a2=S2S1=12,a3=a1+2d= 24,所以前3n项和为36,故选D。(2)特殊函数例7、如果奇函数f(x) 是3,7上是增函数且最小值为5,那么f(x)在区间7,3上是()A.增函数且最小值为5 B.减函数且最小值是5C.增函数且最大值为5 D.减函数且最大值是5解析:构造特殊函数f(x)= x,虽然满足题设条件,并易知f(x)在区间7,3上是增函数,且最大值为f(-3)=-5,故选C。例8、定义在R上的奇函数f(x)为减函数,设a+b0,给出下列不等式:f(a)f(a)0;f(b)f(b)0;f(a)+f(b)f(a)+f(b);f(a)+f(b)f(a)+f(b)。其中正确的不等式序号是( )A B C D解析:取f(x)= x,逐项检查可知正确。故选B。(3)特殊数列例9、已知等差数列 满足 ,则有()A、 B、 C、 D、 解析:取满足题意的特殊数列 ,则 ,故选C。(4)特殊位置例10、过 的焦点 作直线交抛物线与 两点,若 与 的长分别是 ,则 ( )A、 B、 C、 D、解析:考虑特殊位置PQOP时, ,所以 ,故选C。例11、向高为 的水瓶中注水,注满为止,如果注水量 与水深 的函数关系的图象如右图所示,那么水瓶的形状是( )解析:取 ,由图象可知,此时注水量 大于容器容积的 ,故选B。(5)特殊点例12、设函数 ,则其反函数 的图像是( )A、B、C、D、解析:由函数 ,可令x=0,得y=2;令x=4,得y=4,则特殊点(2,0)及(4,4)都应在反函数f1(x)的图像上,观察得A、C。又因反函数f1(x)的定义域为 ,故选C。(6)特殊方程例13、双曲线b2x2a2y2=a2b2 (ab0)的渐近线夹角为,离心率为e,则cos 等于()Ae Be2 C D 解析:本题是考查双曲线渐近线夹角与离心率的一个关系式,故可用特殊方程来考察。取双曲线方程为 =1,易得离心率e= ,cos = ,故选C。(7)特殊模型例14、如果实数x,y满足等式(x2)2+y2=3,那么 的最大值是( )A B C D 解析:题中 可写成 。联想数学模型:过两点的直线的斜率公式k= ,可将问题看成圆(x2)2+y2=3上的点与坐标原点O连线的斜率的最大值,即得D。3、图解法:就是利用函数图像或数学结果的几何意义,将数的问题(如解方程、解不等式、求最值,求取值范围等)与某些图形结合起来,利用直观几性,再辅以简单计算,确定正确答案的方法。这种解法贯穿数形结合思想,每年高考均有很多选择题(也有填空题、解答题)都可以用数形结合思想解决,既简捷又迅速。例15、已知、都是第二象限角,且coscos,则()Asin Ctantan Dcotcos找出、的终边位置关系,再作出判断,得B。例16、已知 、 均为单位向量,它们的夹角为60,那么 3 |=() A B C D4解析:如图, 3 ,在 中, 由余弦定理得 3 |= ,故选C。例17、已知an是等差数列,a1=-9,S3=S7,那么使其前n项和Sn最小的n是()A4 B5 C6 D7解析:等差数列的前n项和Sn= n2+(a1- )n可表示为过原点的抛物线,又本题中a1=-91,排除B,C,D,故应选A。例21、原市话资费为每3分钟0.18元,现调整为前3分钟资费为0.22元,超过3分钟的,每分钟按0.11元计算,与调整前相比,一次通话提价的百分率( )A不会提高70% B会高于70%,但不会高于90%C不会低于10% D高于30%,但低于100%解析:取x4,y0.33 - 0.360.36100%8.3%,排除C、D;取x30,y 3.19 - 1.81.8100%77.2%,排除A,故选B。例22、给定四条曲线: , , , ,其中与直线 仅有一个交点的曲线是()A. B. C. D. 解析:分析选择支可知,四条曲线中有且只有一条曲线不符合要求,故可考虑找不符合条件的曲线从而筛选,而在四条曲线中是一个面积最大的椭圆,故可先看,显然直线和曲线 是相交的,因为直线上的点 在椭圆内,对照选项故选D。6、分析法:就是对有关概念进行全面、正确、深刻的理解或对有关信息提取、分析和加工后而作出判断和选择的方法。(1)特征分析法根据题目所提供的信息,如数值特征、结构特征、位置特征等,进行快速推理,迅速作出判断的方法,称为特征分析法。例23、如图,小圆圈表示网络的结点,结点之间的连线表示它们有网线相联,连线标的数字表示该段网线单位时间内可以通过的最大信息量,现从结点A向结点B传送信息,信息可以分开沿不同的路线同时传送,则单位时间内传递的最大信息量为()A26 B24 C20 D19解析:题设中数字所标最大通信量是限制条件,每一支要以最小值来计算,否则无法同时传送,则总数为3+4+6+6=19,故选D。例24、设球的半径为R,P、Q是球面上北纬600圈上的两点,这两点在纬度圈上的劣弧的长是 ,则这两点的球面距离是( )A、 B、 C、 D、 解析:因纬线弧长球面距离直线距离,排除A、B、D,故选C。例25、已知 ,则 等于 ( ) A、 B、 C、 D、 解析:由于受条件sin2+cos2=1的制约,故m为一确定的值,于是sin,cos的值应与m的值无关,进而推知tan 的值与m无关,又 , 1,故选D。(2)逻辑分析法通过对四个选择支之间的逻辑关系的分析,达到否定谬误支,选出正确支的方法,称为逻辑分析法。例26、设a,b是满足ab|ab| B|a+b|ab| C|ab|a|b| D|ab|a|+|b|解析:A,B是一对矛盾命题,故必有一真,从而排除错误支C,D。又由ab0,可令a=1,b= 1,代入知B为真,故选B。例27、 的三边 满足等式 ,则此三角形必是()A、以 为斜边的直角三角形B、以 为斜边的直角三角形C、等边三角形D、其它三角形解析:在题设条件中的等式是关于 与 的对称式,因此选项在A、B为等价命题都被淘汰,若选项C正确,则有 ,即 ,从而C被淘汰,故选D。7、估算法:就是把复杂问题转化为较简单的问题,求出答案的近似值,或把有关数值扩大或缩小,从而对运算结果确定出一个范围或作出一个估计,进而作出判断的方法。例28、农民收入由工资性收入和其它收入两部分构成。03年某地区农民人均收入为3150元(其中工资源共享性收入为1800元,其它收入为1350元),预计该地区自04年起的5年内,农民的工资源共享性收入将以每年的年增长率增长,其它性收入每年增加160元。根据以上数据,08年该地区人均收入介于( )(A)4200元4400元 (B)4400元4460元(C)4460元4800元 (D)4800元5000元解析:08年农民工次性人均收入为: 又08年农民其它人均收入为1350+160 =2150故08年农民人均总收入约为2405+2150=4555(元)。故选B。说明:1、解选择题的方法很多,上面仅列举了几种常用的方法,这里由于限于篇幅,其它方法不再一一举例。需要指出的是对于有些题在解的过程中可以把上面的多种方法结合起来进行解题,会使题目求解过程简单化。2、对于选择题一定要小题小做,小题巧做,切忌小题大做。“不择手段,多快好省”是解选择题的基本宗旨。(二)选择题的几种特色运算1、借助结论速算例29、棱长都为 的四面体的四个顶点在同一球面上,则此球的表面积为()A、 B、 C、 D、 解析:借助立体几何的两个熟知的结论:(1)一个正方体可以内接一个正四面体;(2)若正方体的顶点都在一个球面上,则正方体的对角线就是球的直径。可以快速算出球的半径 ,从而求出球的表面积为 ,故选A。2、借用选项验算例30、若 满足 ,则使得 的值最小的 是 ( )A、(4.5,3) B、(3,6) C、(9,2) D、(6,4)解析:把各选项分别代入条件验算,易知B项满足条件,且 的值最小,故选B。3、极限思想不算例31、正四棱锥相邻侧面所成的二面角的平面角为 ,侧面与底面所成的二面角的平面角为 ,则 的值是()A、1B、2C、1D、 解析:当正四棱锥的高无限增大时, ,则 故选C。4、平几辅助巧算例32、在坐标平面内,与点A(1,2)距离为1,且与点B(3,1)距离为2的直线共有( )A、1条 B、2条 C、3条 D、4条解析:选项暗示我们,只要判断出直线的条数就行,无须具体求出直线方程。以A(1,2)为圆心,1为半径作圆A,以B(3,1)为圆心,2为半径作圆B。由平面几何知识易知,满足题意的直线是两圆的公切线,而两圆的位置关系是相交,只有两条公切线。故选B。5、活用定义活算例33、若椭圆经过原点,且焦点F1(1,0),F2(3,0),则其离心率为( )A、 B、 C、 D、 解析:利用椭圆的定义可得 故离心率 故选C。6、整体思想设而不算例34、若 ,则的值为()A、1 B、-1 C、0 D、2解析:二项式中含有 ,似乎增加了计算量和难度,但如果设 , ,则待求式子 。故选A。7、大胆取舍估算例35、如图,在多面体ABCDFE中,已知面ABCD是边长为3的正方形,EFAB,EF= ,EF与面ABCD的距离为2,则该多面体的体积为( )A、 B、5 C、6 D、 解析:依题意可计算 ,而 6,故选D。8、发现隐含少算例36、 交于A、B两点,且 ,则直线AB的方程为()A、 B、 C、 D、 解析:解此题具有很大的迷惑性,注意题目隐含直线AB的方程就是 ,它过定点(0,2),只有C项满足。故选C。9、利用常识避免计算例37、我国储蓄存款采取实名制并征收利息税,利息税由各银行储蓄点代扣代收。某人在2001年9月存入人民币1万元,存期一年,年利率为2.25%,到期时净得本金和利息共计10180元,则利息税的税率是( )A、8% B、20% C、32% D、80%解析:生活常识告诉我们利息税的税率是20%。故选B。(三)选择题中的隐含信息之挖掘1、挖掘“词眼”例38、过曲线 上一点 的切线方程为( )A、 B、 C、 D、 错解: ,从而以A点为切点的切线的斜率为9,即所求切线方程为 故选C。剖析:上述错误在于把“过点A的切线”当成了“在点A处的切线”,事实上当点A为切点时,所求的切线方程为 ,而当A点不是切点时,所求的切线方程为 故选D。2、挖掘背景例39、已知 , 为常数,且 ,则函数 必有一周期为( )A、2 B、3 C、4 D、5 分析:由于 ,从而函数 的一个背景为正切函数tanx,取 ,可得必有一周期为4 。故选C。3、挖掘范围例40、设 、 是方程 的两根,且 ,则 的值为( )A、 B、 C、 D、 错解:易得 ,从而 故选C。剖析:事实上,上述解法是错误的,它没有发现题中的隐含范围。由韦达定理知 .从而 ,故 故选A。4、挖掘伪装例41、若函数 ,满足对任意的 、 ,当 时, ,则实数 的取值范围为( )A、 B、 C、 D、 分析:“对任意的x1、x2,当 时, ”实质上就是“函数单调递减”的“伪装”,同时还隐含了“ 有意义”。事实上由于 在 时递减,从而 由此得a的取值范围为 。故选D。5、挖掘特殊化例42、不等式 的解集是( )A、 B、 C、4,5,6 D、4,4.5,5,5.5,6分析:四个选项中只有答案D含有分数,这是何故?宜引起高度警觉,事实上,将x值取4.5代入验证,不等式成立,这说明正确选项正是D,而无需繁琐地解不等式。6、挖掘修饰语例43、在纪念中国人民抗日战争胜利六十周年的集会上,两校各派3名代表,校际间轮流发言,对日本侵略者所犯下的滔天罪行进行控诉,对中国人民抗日斗争中的英勇事迹进行赞颂,那么不同的发言顺序共有( )A、72种 B、36种 C、144种 D、108种分析:去掉题中的修饰语,本题的实质就是学生所熟悉的这样一个题目:三男三女站成一排,男女相间而站,问有多少种站法?因而易得本题答案为 。故选A。7、挖掘思想例44、方程 的正根个数为( )A、0 B、1 C、2 D、3分析:本题学生很容易去分母得 ,然后解方程,不易实现目标。事实上,只要利用数形结合的思想,分别画出 的图象,容易发现在第一象限没有交点。故选A。8、挖掘数据例45、定义函数 ,若存在常数C,对任意的 ,存在唯一的 ,使得 ,则称函数 在D上的均值为C。已知 ,则函数 上的均值为( )A、 B、 C、 D、10分析: ,从而对任意的 ,存在唯一的 ,使得 为常数。充分利用题中给出的常数10,100。令 ,当 时, ,由此得 故选A。(四)选择题解题的常见失误1、审题不慎例46、设集合M直线,P圆,则集合 中的元素的个数为( ) A、0 B、1 C、2 D、0或1或2误解:因为直线与圆的位置关系有三种,即交点的个数为0或1或2个,所以 中的元素的个数为0或1或2。故选D。剖析:本题的失误是由于审题不慎引起的,误认为集合M,P就是直线与圆,从而错用直线与圆的位置关系解题。实际上,M,P表示元素分别为直线和圆的两个集合,它们没有公共元素。故选A。2、忽视隐含条件例47、若 、 分别是 的等差中项和等比中项,则 的值为( )A、 B、 C、 D、 误解:依题意有 , 由2-2得, ,解得 。故选C。剖析:本题失误的主要原因是忽视了三角函数的有界性这一隐含条件。事实上,由 ,得 ,所以 不合题意。故选A。3、概念不清例48、已知 ,且 ,则m的值为( )A、2 B、1 C、0 D、不存在误解:由 ,得,方程无解,m不存在。故选D。剖析:本题的失误是由概念不清引起的,即 ,则 ,是以两直线的斜率都存在为前提的。若一直线的斜率不存在,另一直线的斜率为0,则两直线也垂直。当m=0时,显然有 ;若 时,由前面的解法知m不存在。故选C。4、忽略特殊性例49、已知定点A(1,1)和直线 ,则到定点A的距离与到定直线 的距离相等的点的轨迹是( )A、椭圆 B、双曲线 C、抛物线 D、直线误解:由抛物线的定义可知,动点的轨迹是抛物线。故选C。剖析:本题的失误在于忽略了A点的特殊性,即A点落在直线 上。故选D。5、思维定势例50、如图1,在正方体AC1中盛满水,E、F、G分别为A1B1、BB1、BC1的中点。若三个小孔分别位于E、F、G三点处,则正方体中的水最多会剩下原体积的( )A、 B、 C、 D、 误解:设平面EFG与平面CDD1C1交于MN,则平面EFMN左边的体积即为所求,由三棱柱B1EFC1NM的体积为 ,故选B。剖析:在图2中的三棱锥ABCD中,若三个小孔E、F、G分别位于所在棱的中点处,则在截面EFG下面的部分就是盛水最多的。本题的失误在于受图2的思维定势,即过三个小孔的平面为截面时分成的两部分中,较大部分即为所求。事实上,在图1中,取截面BEC1时,小孔F在此截面的上方, ,故选A。6、转化不等价例51、函数 的值域为( )A、 B、 C、 D、 误解:要求原函数的值域可转化为求反函数的定义域。因为反函数 ,所以 ,故选A。剖析:本题的失误在于转化不等价。事实上,在求反函数时,由 ,两边平方得 ,这样的转化不等价,应加上条件 ,即 ,进而解得, ,故选D。考试时,当我们遇到难题怎么办?在每一次考试中,遇到一些难题是无可避免的,那么,当我们遇到这些难题应该怎么做呢?是否,有时候很心慌,是否,有时候很着急?是否,有时候很懊恼,是否,有时候甚至想要放弃?这些都是不正确的,那么当我们遇到难题时应该怎么做呢?(以数学为例)一、调理大脑思绪,提前进入数学情境 考前要摒弃杂念,排除干扰思绪,使大脑处于“空白”状态,创设数学情境,进而酝酿数学思维,提前进入“角色”,通过清点用具、暗示重要知识和方法、提醒常见解题误区和自己易出现的错误等,进行针对性的自我安慰,从而减轻压力,轻装上阵,稳定情绪、增强信心,使思维单一化、数学化、以平稳自信、积极主动的心态准备应考。二、“内紧外松”,集中注意,消除焦虑怯场 集中注意力是考试成功的保证,一定的神经亢奋和紧张,能加速神经联系,有益于积极思维,要使注意力高度集中,思维异常积极,这叫内紧,但紧张程度过重,则会走向反面,形成怯场,产生焦虑,抑制思维,所以又要清醒愉快,放得开,这叫外松。三、沉着应战,确保旗开得胜,以利振奋精神 良好的开端是成功的一半,从考试的心理角度来说,这确实是很有道理的,拿到试题后,不要急于求成、立即下手解题,而应通览一遍整套试题,摸透题情,然后稳操一两个易题熟题,让自己产生 “旗开得胜”的快意,从而有一个良好的开端,以振奋精神,鼓舞信心,很快进入最佳思维状态,即发挥心理学所谓的“门坎效应”,之后做一题得一题,不断产生正激励,稳拿中低,见机攀高。四、“六先六后”,因人因卷制宜 在通览全卷,将简单题顺手完成的情况下,情绪趋于稳定,情境趋于单一,大脑趋于亢奋,思维趋于积极,之后便是发挥临场解题能力的黄金季节了,这时,考生可依自己的解题习惯和基本功,结合整套试题结构,选择执行“六先六后”的战术原则。 1.先易后难。就是先做简单题,再做综合题,应根据自己的实际,果断跳过啃不动的题目,从易到难,也要注意认真对待每一道题,力求有效,不能走马观花,有难就退,伤害解题情绪。 2. 先熟后生。通览全卷,可以得到许多有利的积极因素,也会看到一些不利之处,对后者,不要惊慌失措,应想到试题偏难对所有考生也难,通过这种暗示,确保情绪稳定,对全卷整体把握之后,就可实施先熟后生的策略,即先做那些内容掌握比较到家、题型结构比较熟悉、解题思路比较清晰的题目。这样,在拿下熟题的同时,可以使思维流畅、超常发挥,达到拿下中高档题目的目的。 3.先同后异。先做同科同类型的题目,思考比较集中,知识和方法的沟通比较容易,有利于提高单位时间的效益。高考题一般要求较快地进行“兴奋灶”的转移,而“先同后异”,可以避免“兴奋灶”过急、过频的跳跃,从而减轻大脑负担,保持有效精力。4.先小后大。小题一般是信息量少、运算量小,易于把握,不要轻易放过,应争取在大题之前尽快解决,从而为解决大题赢得时间,创造一个宽松的心理基矗。5.先点后面。近年的高考数学解答题多呈现为多问渐难式的“梯度题”,解答时不必一气审到底,应走一步解决一步,而前面问题的解决又为后面问题准备了思维基础和解题条件,所以要步步为营,由点到面。6.先高后低。即在考试的后半段时间,要注重时间效益,如估计两题都会做,则先做高分题;估计两题都不易,则先就高分题实施“分段得分”,以增加在时间不足前提下的得分。五、一“慢”一“快”,相得益彰 有些考生只知道考场上一味地要快,结果题意未清,条件未全,便急于解答,岂不知欲速则不达,结果是思维受阻或进入死胡同,导致失败。应该说,审题要慢,解答要快。审题是整个解题过程的“基础工程”,题目本身是“怎样解题”的信息源,必须充分搞清题意,综合所有条件,提炼全部线索,形成整体认识,为形成解题思路提供全面可靠的依据。而思路一旦形成,则可尽量快速完成。六、确保运算准确,立足一次成功 数学高考题的容量在120分钟时间内完成大小20道题,时间很紧张,不允许做大量细致的解后检验,所以要尽量准确运算(关键步骤,力求准确,宁慢勿快),立足一次成功。解题速度是建立在解题准确度基础上,更何况数学题的中间数据常常不但从“数量”上,而且从“性质”上影响着后继各步的解答。所以,在以快为上的前提下,要稳扎稳打,层层有据,步步准确,不能为追求速度而丢掉准确度,甚至丢掉重要的得分步骤,假如速度与准确不可兼得的说,就只好舍快求对了,因为解答不对,再快也无意义。 七、讲求规范书写,力争既对又全 考试的又一个特点是以卷面为唯一依据。这就要求不但会而且要对、对且全,全而规范。会而不对,令人惋惜;对而不全,得分不高;表述不规范、字迹不工整又是造成高考数学试卷非智力因素失分的一大方面。因为字迹潦草,会使阅卷老师的第一印象不良,进而使阅卷老师认为考生学习不认真、基本功不过硬、“感情分”也就相应低了,此所谓心理学上的“光环效应”。“书写要工整,卷面能得分”讲的也正是这个道理。八、面对难题,讲究策略,争取得分 会做的题目当然要力求做对、做全、得满分,而更多的问题是对不能全面完成的题目如何分段得分。下面有两种常用方法。 1. 缺步解答。对一个疑难问题,确实啃不动时,一个明智的解题策略是:将它划分为一个个子问题或一系列的步骤,先解决问题的一部分,即能解决到什么程度就解决到什么程度,能演算几步就写几步,每进行一步就可得到这一步的分数。如从最初的把文字语言译成符号语言,把条件和目标译成数学表达式,设应用题的未知数,设轨迹题的动点坐标,依题意正确画出图形等,都能得分。还有象完成数学归纳法的第一步,分类讨论,反证法的简单情形等,都能得分。而且可望在上述处理中,从感性到理性,从特殊到一般,从局部到整体,产生顿悟,形成思路,获得解题成功。 2. 跳步解答。解题过程卡在一中间环节上时,可以承认中间结论,往下推,看能否得到正确结论,如得不出,说明此途径不对,立即否得到正确结论,如得不出,说明此途径不对,立即改变方向,寻找它途;如能得到预期结论,就再回头集中力量攻克这一过渡环节。若因时间限制,中间结论来不及得到证实,就只好跳过这一步,写出后继各步,一直做到底;另外,若题目有两问,第一问做不上,可以第一问为“已知”,完成第二问,这都叫跳步解答。也许后来由于解题的正迁移对中间步骤想起来了,或在时间允许的情况下,经努力而攻下了中间难点,可在相应题尾补上。总之,不要紧张,不要心慌,不要着急,不要懊恼,更不要放弃,要知道,你觉得这个题难,别人也不会觉得多简单,这些都是一样的,只要我们沉着面对,一切都会好起来的!文科数学148分经验分享对于大部分考生来说,数学满分也许是永难企及的美梦,然而不够完美的148分却能拉近你我的距离。如果平凡的我能够做到,你也一定没问题。我身在“牛

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论