高中数学 第二章 平面向量 2.2.1 向量加法运算及其几何意义课件 新人教A版必修4.ppt_第1页
高中数学 第二章 平面向量 2.2.1 向量加法运算及其几何意义课件 新人教A版必修4.ppt_第2页
高中数学 第二章 平面向量 2.2.1 向量加法运算及其几何意义课件 新人教A版必修4.ppt_第3页
高中数学 第二章 平面向量 2.2.1 向量加法运算及其几何意义课件 新人教A版必修4.ppt_第4页
高中数学 第二章 平面向量 2.2.1 向量加法运算及其几何意义课件 新人教A版必修4.ppt_第5页
已阅读5页,还剩25页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2 2平面向量的线性运算 2 2 1向量加法运算及其几何意义 一 二 三 一 二 三 2 如图 表示橡皮条在两个力的作用下 沿着gc的方向伸长了eo 图 表示撤去f1和f2 用一个力f作用在橡皮条上 使橡皮条沿着相同的方向伸长了相同的长度 根据物理学知识 f1和f2两个力的和与力f相等吗 提示 相等 一 二 三 一 二 三 4 三角形法则与平行四边形法则的记忆口诀 三角形法则 作平移 首尾连 由起点指终点 平行四边形法则 作平移 共起点 四边形 对角线 5 规定 对于零向量与任一向量a 规定 a 0 0 a a 一 二 三 6 当向量a b是共线向量时 不能用平行四边形法则作出两个向量的和向量 但可以用三角形法则作出两个向量的和向量 分两向量同向和反向两种情形 同向 反向 一 二 三 4 做一做 如图 已知向量a b 求作向量a b 作法1三角形法则作法2平行四边形法则 一 二 三 二 向量加法的运算律 问题思考 1 实数的加法满足哪些运算律 向量加法是否也满足这些运算律 提示 实数的加法满足交换律和结合律 向量加法也满足 2 填空 1 向量加法的交换律 a b b a 2 向量加法的结合律 a b c a b c 一 二 三 三 a b 与 a b 之间的关系 问题思考 1 根据向量加法的三角形法则以及 三角形中两边之和大于第三边 两边之差小于第三边 你能发现 a b 与 a b 之间的关系吗 提示 a b a b a b 2 填空 1 对于任意向量a b 都有 a b a b a b 2 当a b共线 且同向时 有 a b a b 3 当a b共线 且反向时 有 a b a b 或 b a 解析 根据公式 a b a b a b 直接计算可得 答案 3 13 一 二 三 答案 1 2 3 4 5 探究一 探究二 探究三 思维辨析 分析通过向量平移 借助三角形法则或平行四边形法则化简得出结果 探究一 探究二 探究三 思维辨析 反思感悟利用三角形法则时 要注意首尾相连 利用平行四边形法则时 要注意向量必须在同一起点 否则要通过平移将它们变为有相同起点的向量 然后作平行四边形 探究一 探究二 探究三 思维辨析 变式训练1如图 在 abc中 d e分别是ab ac上的点 f为线段de延长线上一点 de bc ab cf 连接cd 那么 在横线上只填上一个向量 探究一 探究二 探究三 思维辨析 探究一 探究二 探究三 思维辨析 分析根据向量加法的交换律变为首尾相接的向量 然后利用结合律求解 探究一 探究二 探究三 思维辨析 反思感悟解决向量加法运算时应关注两点 1 可以利用向量的几何表示 画出图形进行化简或计算 2 要灵活应用向量加法运算律 注意各向量的起 终点及向量起 终点字母的排列顺序 特别注意勿将0写成0 探究一 探究二 探究三 思维辨析 探究一 探究二 探究三 思维辨析 例3 在某地抗震救灾中 一架飞机从a地按北偏东35 的方向飞行800km到达b地接到受伤人员 然后又从b地按南偏东55 的方向飞行800km送往c地医院 求这架飞机飞行的路程及两次位移的和 分析解答本题先正确画出方位图 再根据图形借助于向量求解 探究一 探究二 探究三 思维辨析 探究一 探究二 探究三 思维辨析 反思感悟向量加法应用的关键及技巧 1 三个关键 一是搞清构成平面图形的向量间的相互关系 二是熟练找出图形中的相等向量 三是能根据三角形法则或平行四边形法则作出向量的和向量 2 应用技巧 准确画出几何图形 将几何图形中的边转化为向量 将所求问题转化为向量的加法运算 进而利用向量加法的几何意义进行求解 探究一 探究二 探究三 思维辨析 本例中 这架飞机到达c地医院后 往正南方向飞行多大距离即可由此按正西方向飞回a地 解 如图 由点c作垂线 垂足为d 因为 bac 45 所以 cad 90 35 45 10 探究一 探究二 探究三 思维辨析 对不等式 a b a b a b 中等号成立条件理解不清致误 典例 若a b是非零向量 且 a b b a 则 a a b同向共线b a b反向共线c a b同向共线且 b a d a b反向共线且 b a 错解 b错解 错在什么地方 你能发现吗 怎样避免这类错误呢 提示 错解 只考虑了向量的方向 但没有注意到其模的大小关系 正解 由于 a b b a 因此向量a b是方向相反的向量 且 b a 故选d 答案 d 探究一 探究二 探究三 思维辨析 防范措施弄清a b的方向以及模与向量a b的方向 模之间的关系 1 当a与b同向共线时 a b与a b同向 且 a b a b 2 当a与b反向共线时 若 a b 则a b与a的方向相同 且 a b a b 若 a b 则a b与b的方向相同 且 a b b a 若 a b 则a b 0 1 2 3 4 5 1 若向量a表示向东北方向走5km 向量b表示向西北方向走5km 则向量a b表示 a 向正北方向走5km解析 由向量加法的平行四边形法则可知 向量a b表示向正北方向走5km 答案 b 1 2 3 4 5 答案 b 1 2 3 4 5 答案 b 1

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论