高考数学二轮复习 第二部分 高考22题各个击破 专题四 数列 4.2.2 数列中的证明及存在性问题课件 文.ppt_第1页
高考数学二轮复习 第二部分 高考22题各个击破 专题四 数列 4.2.2 数列中的证明及存在性问题课件 文.ppt_第2页
高考数学二轮复习 第二部分 高考22题各个击破 专题四 数列 4.2.2 数列中的证明及存在性问题课件 文.ppt_第3页
高考数学二轮复习 第二部分 高考22题各个击破 专题四 数列 4.2.2 数列中的证明及存在性问题课件 文.ppt_第4页
高考数学二轮复习 第二部分 高考22题各个击破 专题四 数列 4.2.2 数列中的证明及存在性问题课件 文.ppt_第5页
已阅读5页,还剩6页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

4 2 2数列中的证明及存在性问题 2 等差 比 数列的判断与证明 例1已知数列 an 满足an 1 2an n 1 且a1 1 1 求证 数列 an n 为等比数列 2 求数列 an 的前n项和sn 所以数列 an n 是首项为2 公比为2的等比数列 2 解由 1 得 an n 2 2n 1 2n 所以an 2n n 3 解题心得1 判断和证明数列是等差 比 数列的三种方法 1 定义法 对于n 1的任意自然数 验证an 1 an为同一常数 2 通项公式法 若an kn b n n 则 an 为等差数列 若an pqkn b n n 则 an 为等比数列 3 中项公式法 若2an an 1 an 1 n n n 2 则 an 为等差数列 若 an 1 an 1 n n n 2 则 an 为等比数列 2 对已知数列an与sn的关系 证明 an 为等差或等比数列的问题 解题思路是 由an与sn的关系递推出n 1时的关系式 两个关系式相减后 进行化简 整理 最终化归为用定义法证明 4 对点训练1 2017全国 文17 设sn为等比数列 an 的前n项和 已知s2 2 s3 6 1 求 an 的通项公式 2 求sn 并判断sn 1 sn sn 2是否成等差数列 解得q 2 a1 2 故 an 的通项公式为an 2 n 故sn 1 sn sn 2成等差数列 5 数列型不等式的证明例2设sn是数列 an 的前n项和 an 0 且4sn an an 2 1 求数列 an 的通项公式 1 解4sn an an 2 即2 an an 1 an an 1 an an 1 an 0 an an 1 2 an 2 2 n 1 2n 6 解题心得要证明关于一个数列的前n项和的不等式 一般有两种思路 一是先求和 再对和式放缩 二是先对数列的通项放缩 再求数列的和 必要时对其和再放缩 7 对点训练2已知数列 log2 an 1 n n 为等差数列 且a1 3 a3 9 1 求数列 an 的通项公式 1 解设等差数列 log2 an 1 的公差为d 由a1 3 a3 9 得log22 2d log28 即d 1 log2 an 1 1 n 1 1 n 即an 2n 1 8 数列中的存在性问题例3已知数列 an 的前n项和为sn a1 1 an 0 anan 1 sn 1 其中 为常数 1 证明 an 2 an 2 是否存在 使得 an 为等差数列 并说明理由 1 证明由题设 anan 1 sn 1 an 1an 2 sn 1 1 两式相减 得an 1 an 2 an an 1 因为an 1 0 所以an 2 an 9 2 解由题设 a1 1 a1a2 s1 1 可得a2 1 由 1 知 a3 1 令2a2 a1 a3 解得 4 故an 2 an 4 由此可得 a2n 1 是首项为1 公差为4的等差数列 a2n 1 4n 3 a2n 是首项为3 公差为4的等差数列 a2n 4n 1 所以an 2n 1 an 1 an 2 因此存在 4 使得数列 an 为等差数列 解题心得假设推理法 先假设所探求对象存在或结论成立 以此假设为前提条件进行运算或逻辑推理 若由此推出矛盾 则假设不成立 即不存在 若推不出矛盾 即得到存在的结果 10 对点训练3 2017云南昆明一中仿真 文17 已知数列 an 和 bn a1a2a3 an n n 且a1 2 b3 b2 3 数列 an 为等比数列 公比为q 1 求a3及数列 bn 的通项公式 2 令cn 是否存在正整数

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论