




已阅读5页,还剩13页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1 4平面向量题专项练 2 1 平面向量的两个定理及一个结论 1 向量共线定理 向量a a 0 与b共线当且仅当存在唯一一个实数 使b a 2 平面向量基本定理 如果e1 e2是同一平面内的两个不共线向量 那么对这一平面内的任一向量a 有且只有一对实数 1 2 使a 1e1 2e2 其中e1 e2是一组基底 3 三点共线的充要条件 a b c三点共线 存在实数 使 3 2 平面向量的数量积 1 若a b为非零向量 夹角为 则a b a b cos 2 设a x1 y1 b x2 y2 则a b x1x2 y1y2 3 两个非零向量平行 垂直的充要条件若a x1 y1 b x2 y2 则 1 a b a b b 0 x1y2 x2y1 0 2 a b a b 0 x1x2 y1y2 0 4 利用数量积求长度 4 5 利用数量积求夹角若非零向量a x1 y1 b x2 y2 为a与b的夹角 则cos 当a b 0 或a b 0 时 则a与b的夹角为锐角 或钝角 或a与b方向相同 或方向相反 要注意夹角 0 或 的情况 5 一 选择题 二 填空题 a 1b 2c 3d 5 a 2 b 2 2a b 10 a b a b 2 6 a 2 b 2 2a b 6 由 得a b 1 故选a 2 已知向量a 1 m b 3 2 且 a b b 则m d a 8b 6c 6d 8 解析 由题意可知 向量a b 4 m 2 由 a b b 得4 3 m 2 2 0 解得m 8 故选d 6 一 选择题 二 填空题 3 2017河南新乡二模 理3 已知向量a 1 2 b m 4 若 a b a b 0 则实数m等于 c a 4b 4c 2d 2 解析 a b a b 0 a b a b cos 0 cos 1 即a b的方向相反 又向量a 1 2 b m 4 b 2a m 2 7 一 选择题 二 填空题 4 2017辽宁鞍山一模 理5 已知向量a b满足 a 1 a b a 2a b b 则向量a b的夹角为 d 解析 设向量a b的夹角为 因为 a 1 a b a 2a b b 所以 a b a 1 b cos 0 2a b b 2 b cos b 2 0 8 一 选择题 二 填空题 5 2017河北唐山期末 理3 设向量a与b的夹角为 且a 2 1 a 2b 2 3 则cos a 解析 向量a与b的夹角为 且a 2 1 a 2b 2 3 9 一 选择题 二 填空题 6 2017河南商丘二模 理8 若等边三角形abc的边长为3 平面内 10 一 选择题 二 填空题 11 一 选择题 二 填空题 8 2017河南焦作二模 理10 已知p为矩形abcd所在平面内一点 a 5b 5或0c 0d 5 解析 p为矩形abcd所在平面内一点 ab 4 ad 3 ac 5 12 一 选择题 二 填空题 解析 设外接圆圆o的半径为r 13 一 选择题 二 填空题 a 4b 1c 1d 4 14 一 选择题 二 填空题 11 已知a b是单位向量 且a b 若平面向量p满足p a p b 则 p b 解析 设a与b的夹角为 p a p b p a b 0 p a b 可知向量p与向量a b的夹角相等 15 一 选择题 二 填空题 12 2017全国 理12 已知 abc是边长为2的等边三角形 p为平 解析 以bc所在的直线为x轴 bc的垂直平分线ad为y轴 d为坐标原点建立平面直角坐标系 如图 16 一 选择题 二 填空题 13 已知向量a 1 m b 3 2 且 a b b 则m 8 解析 由题意可知 向量a b 4 m 2 由 a b b 得4 3 m 2 2 0 解得m 8 14 2017全国 理13 已知向量a b的夹角为60 a 2 b 1 则 a 2b 2 解析 因为 a 2b 2 a 2b 2 a 2 4 a b cos 17 一 选择题 二 填空题 18 一 选择题 二 填空题 16 2017山西晋中二模 理13 若两个非零向量a b满足 a b a b 2 a 则向量
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
评论
0/150
提交评论