采煤方法图.dwg
采煤方法图.dwg

新源煤矿0.9Mta新井设计含5张CAD图.zip

收藏

压缩包内文档预览:
预览图
编号:41845560    类型:共享资源    大小:2.65MB    格式:ZIP    上传时间:2020-01-17 上传人:QQ14****9609 IP属地:陕西
50
积分
关 键 词:
新源 煤矿 0.9 Mta 设计 CAD
资源描述:
新源煤矿0.9Mta新井设计含5张CAD图.zip,新源,煤矿,0.9,Mta,设计,CAD
内容简介:
复合顶板条件下的回采巷道支护问题探讨摘要:回采巷道的支护管理是煤矿开采工作管理的重点和难点,对于复合顶板条件下的回采巷道支护方式的管理则显得更为重要。本文主要是对在复合顶板条件下的回采巷道支护方法、一些基本概念和技术手段等进行分析探讨,为复合顶板条件下的回采巷道支护问题提供一些经验参考及理论上的支持。关键词:复合顶板、回采巷道、支护0 复合顶板的概念及其特点0.1 复合顶板的概念复合顶板是指:煤层顶板由下软上硬不同岩性的岩层组成,软硬岩层间夹有煤线或薄层软弱岩层(如泥岩、炭质页岩等),下部软岩的厚度一般为0.5m-2.0m之间的顶板。0.2 复合顶板的特点复合顶板的特点表现为:直接顶本身比较容易破碎,且易发生离层,端面顶板易胃落,采场支架易失稳,造成推垮型冒顶事故。以上三情况,都可归纳为复台顶板的稳定性。它是影响工作面正常生产的重要因素。研究复合顶板的稳定性,对控制好复合顶板具有重要实践意义。1在采动影响范围内的回采巷道矿压显现特征经过广泛的调查了解,并对工作面回采巷道进行详细的统计数据分析来看观测,得出回采巷道在回采工作面前方采动影响下,矿压显现的基本特征。(1)围岩活动剧烈。巷道掘进后, 顶板即出现了较明显的变形和破坏,在工作面前方采动引起的集中应力作用下,巷道顶板进一步离层、折断、冒落, 并伴随煤壁片帮更趋严重,巷道断面严重收缩,断面收缩率最高达60%,即高度为0.6m,宽缩小为2 m,如图1-1 所示。由于断面急剧收缩,使人员行走、材料运输十分困难,难以满足通风要求。工作面运输机无法与运输平巷内的运输机正常搭接。为了解决运输机搭接问题,维系工作面生产一度采用工作面下出口巷道放顶办法,放顶高度达2-3 m,以致老顶悬露,无法进行有效支护。如图1-2。(2)巷道支架破损严重,被迫多次翻修。由于围岩的剧烈活动,巷道内掘进时所支设的支架已基本不能承受动态顶板压力的作用,矿用工字钢梁弯曲变形及大量支柱压折压坏,难以保持正常安全生产所需的巷道有效空间,为此,在原支护的基础上再重新套设棚子,巷道围岩活动剧烈处,最多套修了3 次棚子。这种作法的结果,不仅造成了人力、物力、财力的巨大投入,而且使巷道的断面急剧缩小,加剧了生产的困难状况。(3)巷道提前报废,超前工作面掘进短平巷。由于回采工作面采动影响范围内,回采巷道围岩剧烈活动及巷道断面有急剧收缩,常导致该段巷道无法使用而提前报废,被迫在巷道内侧超前掘进短平巷与原巷联通,构成回采工作面的生产系统。因此增加了工作面生产环节,并造成回采煤量的损失,引起资源浪费。总之,回采巷道矿压显现剧烈, 给回采工作带来极严重的影响,找出回采巷道矿压显现剧烈的原因,采用有效的巷道支护形式,是煤矿现实生产的迫切要求。复合顶板下回采巷道受压破坏实际情况以某矿11#煤层回采巷道受压破坏情况为例,见表1-1:表1-1 11#煤层回采巷道受压破坏情况图1-1 巷道断面收缩示意图图1-2 巷道顶板及冒落示意图2 复合顶板下回采巷道围岩和支护作用关系分析以前的矿井采用的是矿用工字钢梁加木柱腿的棚式支护, 支架与顶板及两帮的空隙间充以杂木或圆木刹杆及水泥背板。该种支护方式属于初期柔性(垫板及浮矸和浮煤的压缩形) , 既而刚性的支护方式。在支护几乎未起作用的一段时间里,顶板岩层已经产生较大的变形,甚至离层和断裂,围岩的完整性和整体强度大大降低。随着围岩的变形和破坏的发展,支架对围岩产生以木支柱为主的近似刚性的被动支撑作用,而此时,由于顶板岩层已发生离层及局部破坏,造成部分支架失效而使顶板压力转移,支设在较完整顶板下的支架,既要承受由于刚性特性而产生的较大的载荷,又要承受失效支架转移的部分载荷,势必造成逐个被击破的不利情况,巷道中的表现即为顶梁弯曲变形、柱腿压裂折断,顶板过度变形破坏。综上所述,对于这种典型的复合顶板,应用现代的支护理论和成果,采用有效的支护手段,提高顶板的刚度和强度,有效地控制顶板及两帮煤体的早期变形,是解决回采巷道支护问题的技术关键和唯一有效途径。3 巷道围岩控制方法所谓巷道围岩控制,是指控制巷道围岩应力和周边位移措施的总和,其目的是为了保证巷道的正常使用,为安全生产创造必要的条件。围岩应力、围岩强度及巷道支护是决定巷道围岩稳定的三大要素。从巷道支护方式历史沿革来看,经历了架棚支护,包括木棚和钢棚,后来发展到锚杆支护,以及发展到目前的以锚杆为主的联合支护技术。由于锚网索支护具有独特的优越性,因此在现场得以广泛应用。3.1 锚杆的作用锚杆形成承载基础,既然锚杆支护无法阻止深层岩体的松动,那么也无需特别提高顶板支护体强度,只需把锚杆的延展性、高抗拉强度、抗剪强度的优越性发挥出来。锚杆锚固厚度小,锚固体扩容变形量相对较小,扩容应力也较小,利用全长锚固等强螺纹钢锚杆支护,可满足复合顶板底层锚固体的扩容变形和扩容应力,形成初期支护阶段的顶板挤压加固拱平衡状态。3.2 锚索的应用锚索形成稳定承载体,利用钢绞线锚索预应力对岩体挤压加固作用,使锚索与锚杆支护相互促进、相互补强。锚索有很好的延展性和抗拉强度,使锚索形成的锚固岩体在巷道顶板中部形成一条强度大、结构稳定的承载体。锚索锚固点处在松动圈之外,增加了顶板承载体的稳定性。锚索布置在2 排锚杆之间,增加了支护的密度,锚索的高延展性、高强度,进一步提高了承载体的强度、塑性和抗弯曲破坏能力,提高了承载体的自稳能力。3.3 金属网的作用金属网能够托住挤入巷道的岩石,将锚杆之间非锚固岩层载荷传递给锚杆,有效地控制锚杆之间非锚固岩层的变形;金属网托住已碎裂的岩石,防止碎裂岩体的垮落,虽然巷道围岩已破裂,由于碎石的碎胀作用和传递力的媒体作用,使巷道深部岩石仍保持三向应力状态,大大提高了岩体的残余强度。4 目前解决复合顶板下回采巷道支护问题的方法和技术4.1 复合顶板下回采巷道采用锚杆支护的技术回采巷道破碎顶板以往采用棚子支护,熟不知,由于棚子支护接顶性比较差又不能产生初撑力,使得顶板在承受支撑力之前就产生离层,断裂现象。巷道在初期尚能维护基本形态、但状态不理想。经过一定时间后, 巷道顶板逐渐出现离层、裂隙脱落现象。其主要原因是,棚子支护处于一种等待顶板下沉状态。当支架承载时,顶板离层已经达到一定程度,尤其是当工作面回采时,工作面前方支承压力影响范围内巷道支护载荷进一步加大而此时的支架也就是围岩支护已经遭到破坏,只凭棚子已经难以承受采动影响下高应力的作用。在实际生产中,压弯棚梁、压折棚腿、煤壁片帮顶板冒顶现象经常发生,特别是经过反复维护后巷道收缩到不能满足正常回采的要求而造成工作面运输机与顺槽运输机不能正常搭接, 迫使工作面安全出口顺槽处采用强制放顶的方法扩大工作空间,造成不安全因素。巷道在掘进时放炮崩倒棚子现象也经常发生,最多一个班扶10多架棚子,使掘进工作面经常处于空顶状态,放炮震动反复的促进巷道顶板的离层、断裂,为巷道维护埋下了安全隐患。下面就以双阳煤矿三井的上层右零片所掘的巷道为例,说明复合顶板条件下的回采巷道锚杆支护技术。4.1.1 锚杆支护巷道机理双阳矿三井上层顶板为复合顶板,在层状岩层中开拓的巷道与均质的岩层中明显不同,岩层的层面有三种主要性质对开采是很重要的。第一,垂直于岩层层面的抗拉强度低,个别出现明显裂隙的地方甚至为零。第二,是层面的抗剪强度比完整的岩层低。第三,是这类煤层中开掘巷道多不破顶,这三个特性决定了层状岩层对下煤层中开掘巷道产生的特殊力反应。对于层状煤层体中开掘巷道, 其支护原则是:第一,充分发挥围岩的自承能力,即完整性,尤其是顶板;第二,是采取措施提高围岩的强度。而满足这两个要求的理想支护就是锚杆支护,这时通过锚杆提供的锚固力和预紧力,各层岩层被组合形成组合梁,一起发生弯曲变形。层状岩层在产生弯曲变形后,很容易产生顺层滑动,这时借助于锚杆提供的抗剪力、抗拉力以及由于锚杆作用,而使层面摩擦力增加,使岩层间的滑动得以控制。4.1.2 回采巷道锚杆支护参数设计根据锚杆组合梁作用分析,假定层面是水平的,且己知各层间的参数,根据巷道的跨度2.6米埋藏深度为200 米,来确定锚杆各项参数。4.1.3 地压计算Z=4/3ra2/f=4/32.51.32/5=1.126T/m式中:Z- - - 每米巷道顶板压力T/m4/3- - - 巷道压力拱系数r- - - 顶板岩石容重T/(m3)取2.5a- - - 巷道跨度一半mf- - - 岩石普氏系数取54.1.4 支护参数选择计算(1) 锚杆长度L=N(1.1+b/10)=1.2(1.1+2.6/10)=1.6m式中:L- - - 锚杆长度mN- - - 岩石稳定性系数取1.2b- - - 巷道跨度2.6m(2)锚杆直径d=L/110=1.6/110=0.0146m 取直径15mm式中:d- - - 锚杆直径mmL- - - 锚杆长度m综合上式计算,结合复合顶板岩层的厚度,考虑锚固长度不能低于250mm, 锚杆布置与垂直方向有一定倾角, 故选用长度为1.6-1.8m,直径为16-18mm金属树脂锚杆为宜。4.1.5 锚杆数量和平均间距的确定根据巷道的跨度, 所须组合梁弯曲时锚杆的布置应使用所提供的抗剪力,必须保证组合梁不能抻裂,故锚杆布置为:三排锚杆,排距0.8米,间距为1.0 米。4.1.6 支护方案的实施根据上述锚杆支护的设计,巷道顶板采用1.6-1.8m 长,直径为16-18mm的树脂端头锚固式金属锚杆,锚杆采用三排布置。该巷道断面为矩形,抓煤层走向,在煤层中掘进,不破顶,锚杆布置间距为1.0 米,排距为0.8 米,中间一排锚杆布置在巷道中心上。4.1.7 树脂锚杆的安装锚杆安装过程中应严格按树脂药卷说明书上规定的搅拌、等待时间等安装方法操作, 向孔中送树脂药卷时应轻轻将药卷送到孔中。当使用两种胶凝速度的树脂药卷时,应将胶凝速度快的放在前面,胶凝速度慢的放在后面。每个锚杆眼中不得应用两卷及以上双速药卷。应将树脂药卷缓慢匀速推倒眼底后, 再机械转动边旋转边匀速上推。上推到眼底的时间一般占总搅拌时间的70%;推到眼底后继续搅拌,其时间一般占总搅拌的30%。待树脂药卷搅拌一段时间且树脂锚固剂已具有锚固能力后方可紧固螺母。紧固螺母时,应使螺母扭矩达到规定扭矩要求。如果巷道过断层或构造破碎带,可加金属网或者钢带,锚杆安装时应使锚杆穿过钢带控制孔和金属网,锚入顶板后应将钢带和金属网压紧,贴实顶板。4.1.8 技术要求(1)为了保证支护效果,要求锚杆垂直顶板打设,严禁串皮。(2)放炮后,要求对工作面前方10米范围内的锚杆二次拧紧,保证锚杆紧贴顶板。(3)锚杆要及时打设,严禁空顶作业。4.1.9 技术评价及效果锚杆将软弱多层的直接顶组合加固到一起,形成了一个较坚固可以承受上覆岩层的动压,及回采期间采动过程中产生动压影响的组合梁结构,和巷道的围岩体系共同的作用,达到了支护的目的。(1)在采掘期间锚杆支护完全经受住了静动压的影响,复合顶板巷道的支护改棚子支护为锚杆支护是合理的。(2)采用锚杆支护形式,有效的控制了顶板的稳定性和完整性,使岩层处在一种动态后的稳定状态,避免了局部冒顶事故的发生。(3)采用锚杆支护,省掉了放炮后扶棚子的工作量,减轻了工人的劳动强度,这种巷道支护的改变在技术上是可行的,安全上是可靠的。4.2 复合顶板条件下回采巷道采用锚网索联合支护的技术4.2.1 巷道锚网索支护参数设计采用煤巷锚杆支护监控设计法。该法是一个动态设计过程:利用计算机数值模拟现场情况,并设计初始支护参数,进行现场应用, 然后用现场反馈的情况再修改,如此循环最终达到较理想的支护参数。设计的初始支护参数如下:(1)巷道断面为直角梯形,断面尺寸为宽*中高= 4.0 m*2.6 m;(2)巷道顶板采用4 根螺纹钢预拉力锚杆加4.5 m 长W型钢带、菱形金属网联合支护, 锚杆长度为2500 mm,直径为20 mm,间排距为800 mm *800 mm,采用加长锚固方式,每根锚杆采用1 节CK2335 超快速树脂药卷和1 节Z2370 中速树脂药卷;(3)巷道两帮分别采用4 根螺纹钢预拉力锚杆加轻型钢带、菱形金属网联合支护。锚杆长度为2000 mm,直径为20mm,上帮间排距为800 mm* 800 mm,下帮间排距为700 mm*800 mm,采用加长锚固方式,每根锚杆采用1 节CK2335 超快速树脂药卷和1 节Z2370 中速树脂药卷;(4)每隔2 400 mm 在巷道顶板打1 根直根直径为17.8 mm、长6300 mm 的锚索,采用1 节CK2335 超快速树脂药卷和2节Z2370 中速树脂药卷。巷道支护参数如图4-1 所示:图4-1 巷道锚网索支护参数布置示意图4.2.2 支护效果现场监测与反馈将设计的支护参数应用于试验巷道,对巷道进行现场监测,监测内容包括:(1) 表面位移观测。分析围岩的运动是否影响巷道的正常使用。(2) 围岩深部位移。分析围岩深部位移情况,判断两帮围岩松动区范围和围岩稳定状况。(3) 锚杆(索)托锚力。分析锚杆(索)的工作状态及支护参数的合理性。上述观测每项分别设置2 个测站,表面位移采用测杆观测,围岩深部位移采用KDY- 1 型多点位移计测试,锚杆(索)的托锚力采用MCJ 25(40) 型锚杆(索)测力计测试。观测结果分析如下。4.2.3 巷道表面变形综合分析观测数据,可得巷道回采期间围岩表面位移及变形速率曲线,如图4-2、图4-3 所示。图4-2 巷道回采期间围岩表面位移图4-3 巷道回采期间围岩变形速率曲线巷道表面围岩变形在回采期间可分为3个阶段:(1)无采动影响阶段:在工作面前方92 m 以外,该段内巷道基本上不受回采影响, 围岩表面变形速率均较小,不超过2 mm/d,巷道维护状况良好。(2)采动影响阶段:在工作面前方92- 43 m 范围内,在该区内由于巷道受到工作面超前支承压力作用,巷道变形速率加大,一般在2 20 mm/d。(3)采动影响剧烈阶段: 随着工作面的推进,由于受到回采动压的强烈影响,在距工作面煤壁前方43 m以内,巷道围岩变形加剧, 移近速率一般大于20 mm/d。巷道两帮相对累计移近量最大为725 mm,平均676 mm,最大移近速率为69mm/d, 平均66 mm/d;巷道顶底相对累计移近量最大为655mm,平均631 mm,最大移近速率为67 mm/d,平均62 mm/d。故在这一阶段内应加强对巷道进行支护, 且超前支护距离不应小于43 m。4.2.4 巷道围深部变形巷道回采期间深部围岩位移及变形速率曲线如图4-4至图4-7所示:图4-4 巷道上帮深部位移变化曲线图4-5 巷道上帮倾向位移曲线图4-6 巷道下帮深部位移变化曲线图4-7 巷道下帮倾向位移曲线(1) 巷道深部围岩变形在回采期间沿走向可分为3个阶段:A.无采动影响阶段:在工作面前方90 m以外, 该段内巷道深部围岩基本不受回采动压的影响,深部围岩的相对变形量较小,累计相对变形量不超过10 mm,巷道维护状况良好。B.采动影响阶段:在工作面前方95 34 m 范围内,在该区内由于巷道受到工作面前支承压力和侧支承压力的共同作用,巷道累计相对变形量增加幅度较大,累计相对变形量在40 mm 以内。C.采动影响剧烈阶段:随着工作面的推进, 由于受到回采动压的强烈影响, 在距工作面煤壁前方34 m以内,巷道深部围岩变形剧烈增加,累计相对变形量最大为92 mm。(2) 巷道深部围岩在回采期间沿倾向的变形规律。巷道深部围岩在回采期间也是由浅入深逐渐变形的,但各个深部基点的围岩变形不是线性的,存在一定的差别。1 m 测点相对于1.5 m 测点的累计变形量平均为11 mm;1.5 m 测点相对于2 m 测点的累计变形量平均为13 mm; 2 m 测点相对于2.5m 测点的累计变形量平均为15 mm;2.5 m 测点相对于3 m 测点的累计变形量平均为12 mm;3 m 测点相对于4 m 测点的累计变形量平均为12 mm;4 m 测点相对7 m 测点的累计变形量平均为21 mm。(3) 综放面机巷煤体松动区宽度为2.5-3 m。从以上观测可以看出,巷道在剧烈变形阶段变形较大,且巷道围岩松动区宽度大于锚杆长度,支护参数不能很好地控制巷道围岩变形, 因此在该阶段应该应对支护参数进一步优化或采取二次支护。4.2.5 锚索托锚力观测结果如图4-8所示,分析可得巷道锚索托锚力的变化规律:图4-8 锚索托锚力变化曲线图在采动影响下,随着工作面的推进,锚索力逐渐增大。在距工作面20 m 左右时,锚索力开始急剧增大,到工作面前方3.6 m 处,压力增量达到最大值, 为246 kN,其后急剧降低。这说明了,在采动影响下,巷道上部岩层逐渐下沉,导致锚索力增加, 随着工作面的不断推进,这一增加值越来越大,直到上覆岩层发生断裂,锚索受力才明显下降。由观测数据分析可知,巷道上覆岩层发生断裂的位置距工作面3.6 m处。而且通过试验发现,初锚力、树脂药卷和施工质量是影响巷道支护的重要因素, 因此必须加强施工质量的管理与监督工作, 确保施工质量达到设计要求。4.2.6 复合顶板回采巷道中采用锚网梁索联合支护技术的评价和效果(1) 巷道深部位移在走向上受采动影响变形规律与巷道表面变形规律基本一致,均可分为3 个阶段,即无采动影响阶段、采动影响阶段和采动影响剧烈阶段。(2) 复合顶板回采巷道中采用锚网梁索联合支护是可行的。该地质条件下的支护参数在采动影响阶段以外能较好的控制住巷道的围岩变形,满足安全生产的需要,但是在采动影响剧烈阶段围岩变形大,需要进一步优化支护参数或进行二次支护。(3) 对于锚网索支护巷道, 施工质量的好坏直接影响着支护效果, 在支护材料的选择上,以质量为根本标准,在施工技术加强管理,优化施工设备,提高锚杆锚索的初锚力,以达到最优的支护效果。4.3 复合顶板条件下回采巷道的钢带锚网支护技术4.3.1 钢带锚网支护的作用机理在松软岩层中开挖巷道,由于破坏了原岩应力的平衡状态,巷道围岩在上覆岩体的作用下将产生变形,根据变形程度的不同,由巷壁向围岩深处将形成力学性态不同的个区域,即破坏区、塑性区、弹性区和原岩应力区(如图4-9)。破坏区内虽然岩体强度降低、岩体裂隙发育,但破坏区内围岩体仍然保存了一定的残余强度而保持自稳,如果支护不及时或者支护强度不够,破坏区内岩体就要崩落,原来的塑性区与破坏区相邻部分就会变成破坏区的一部分,依次向巷道围岩深部转移, 导致巷道破坏。钢带锚网支护的机理,就在于利用锚杆将破坏区内松动围岩锚固到不松动的坚固岩体上,利用钢带和金属网将破坏区内破碎岩块相互挤压咬合成一体,从而提高巷道围岩的整体强度和自承能力,钢带锚网支护的作用机理主要体现在以下几个方面:(1)钢带锚网支护改善巷道周边围岩应力状态的作用, 可用围岩的强度曲线和莫尔园的关系来说明,巷道开挖后,巷道周边围岩处于双向受力状态(见图4-10所示),对应巷道周边应力园为A,应力园切于座标原点,并与围岩强度曲线相切而处于极限平衡状态。采用钢带锚网支护后,锚杆通过钢带和金属网提供的支护反力1,使巷道周边围岩由双向受力状态转变为三向受力状态(锚杆通过钢带和金属网提供的支护反力是随着围岩的变形而逐步形成的,并且越来越大),这时对应巷道周边应力状态的应力园B离开座标原点右移,而不与围岩强度曲线相切,因此巷道围岩也就处于稳定状态。(2)利用锚杆的悬吊作用,将复合顶板下位松软岩层锚固到上位坚硬岩层上,同时利用锚杆的预张力在复合顶板下位软岩层内产生压应力,一方面挤压加固松软岩层, 增加松软岩层节理裂隙面或破碎岩块间的摩擦阻力,从而提高松软岩层的强度,另一方面钢带和金属网通过锚杆的预张力将松软破碎岩块夹持在一起,不仅可防止松软破碎岩块的滑移及裂隙的张开,而且还可使岩块间的嵌镶、咬合、联锁效应得以保持,因而进一步保证了松软岩层节理裂隙间的挤压结合,从而达到保持和提高松软岩层强度的目的。(3)钢带和金属网在锚杆预张力的作用下,通过锚杆托板紧贴巷道围岩表面,在巷道围岩表面形成了一个柔性加固带,一方面它可以和围岩共同产生一定量的径向位移,在巷道围岩中形成一定范围的非弹性变形区,使围岩的自支承能力得以充分发挥,另一方面钢带和金属网在与围岩共同变形过程中受到压缩,对围岩产生愈来愈大的支护反力,能够抑制围岩产生过大的变形,防止围岩发生松动冒落。4.3.2 钢带锚网支护的结构形式钢带锚网支护由钢带、金属网、锚杆、平托盘及斜托盘等构件组成(见图4-11所示)。巷道顶板每排共安装 根锚杆(采用树脂端锚、锚固长度不小于300mm), 各锚杆之间用钢带连成一体, 锚杆穿过托盘及钢带, 托盘压住钢带, 钢带压住金属网, 而金属网则直接铺在顶板下面。巷道两帮每排各安装3根竹锚杆(采用水泥药卷全长锚固), 并铺设金属网。4.3.3 钢带锚网支护主要技术参数的确定由于3616综采机巷顶板为复合顶板, 伪顶和直接顶均属软弱岩层, 而老顶为较稳定的灰白色细、中粒砂岩, 所以锚杆支护主要以悬吊作用为主, 锚杆支护参数计算根据悬吊理论进行。图4-9 改善巷道周边围岩应力状态作用原理图4-10 巷道围岩的力学形态图4-11 钢带锚网支护示意图(1)锚杆长度根据悬吊理论:L=L1+L2+H式中: L-锚杆长度, 5L1-锚杆锚人稳定岩层中的深度, 取L=300mmL2-锚杆的外露长度, 取L2=100mmH-软弱岩层厚度, 根据试验巷道的顶板条件,H=0.5+0.1+0.2+1=1.8m将上述各参数代入计算得:L=2.2m,考虑到顶板角锚杆也要锚固到坚硬岩层内, 因此L2.2/COS30,经计算L2.54m,故取锚杆长度L=2.6m(2)锚杆间排距根据锚杆的设计锚固力应不小于被悬吊软弱岩层重量的原则, 即式中:P一顶板金属锚杆的设计锚固力, 取P=7t(根据两淮矿区金属树脂锚杆现场使用经验, 采用树脂端锚, 金属树脂锚杆的锚固力一般都在7t 以上, 故此次试验顶板金属锚杆的设计锚固力为7t)。H-软弱岩层厚度, 同上一样取H=1.8ma-锚杆间距。b一锚杆排距-岩石容重,取下=2.5t/K-安全系数,取2将各参数代人式中, 计算得为了使顶板每排金属锚杆能均匀分布,取a=0.86m,则b0.9m , 为了安全起见,同时也考虑到在现场施工过程中,锚杆的间排距会有一定的误差,因此锚杆的排距设计为0.8m。(3)金属锚杆的直径锚杆直径按锚杆杆体拉力应不小于锚杆的设计锚固力的原则计算,即 式中:P-顶板金属锚杆的设计锚固力, 同上一样取7t;d-锚杆直径。 -锚杆的设计抗拉强度,顶板金属锚杆的材质选钢, 因此取22kg /将各参数代人式中,算得d 20.13mm考虑到锚杆杆体也要有一定的安全系数, 因此取22mm。(4)帮锚杆的长度帮锚杆长度的确定必须遵循两个原则:第一,为了使帮锚杆的内锚头避开顶板角锚杆内锚端头垂直分力的影响,帮锚杆在水平方向上的投影必须要大于顶板角锚杆在水平方向上投影;第二,两帮底角锚杆必须要伸到底板坚固的灰白色细砂岩中,根据上述原则,帮锚杆的长度不应小于1.6m,考虑到一定的安全系数,帮锚杆长度设计为1.8m。4.3.4 复合顶板条件下回采巷道采用钢带锚网支护技术的评价和效果实践表明,钢带锚网支护与矿用工字钢梯形棚支护相比,具有显著的经济效益。这是因为钢带锚网支护不仅降低了木材和钢材的消耗量, 而且还使巷道支护的初期投资成倍下降。由表4-1可看出,每米巷道材料初期投资, 钢带锚网支护为565.8元,矿用工字钢梯形棚支护为1400.2 元, 前者只是后者的 40%。如果不考虑矿用工字钢回收、修复、运输等费用,每米巷道折合材料消耗,钢带锚网支护为 469.8 元,而矿用工字钢梯形棚支护为 457.4元,两种支护形式折合材料耗也基本一致。表4-1 钢带锚网支护与矿用工字钢梯形棚支护每米巷道材料消耗对比钢带锚网支护实际上是一种以锚杆为支护主体,以钢带和金属网为连接件的联合支护结构,锚杆通过钢带和金属网不仅可使单根锚杆的点支护力转变为组合锚杆的面支护力,而且还可在巷道围岩表面形成一个柔性加固带,从而使这种支护结构具有刚柔相济的主动支护作用,其中不仅钢带能使破碎岩块有相互挤压咬合成一体,而且金属网还可以将破碎小岩块兜住,从而有利于保持巷道围岩的稳定性。对于复合顶板回采巷道, 采用钢带锚网支护无论是经济上还是支护效果上都比矿用工字钢梯形棚支护显著优越,因此在回采巷道, 特别是复合顶板、松软破碎顶板回采巷道,钢带锚杆支护将是一种具有普遍推广使用价值的支护方式。4.4 回采巷道特殊复合顶板的支护技术东荣二矿在十七层煤回采巷道顶板整体性破坏后(如出现局部冒落),顶板破坏急剧发展呈现类似散体的软岩的破碎状态,其变形移动过程可分为如下几个阶段:(1)水平移动并形成大量超薄子分层。顶板冒落空洞形成后,空间四周各分层岩层向冒落空洞水平移动,各分层岩层在水平移动过程中, 其内部隐含的超薄复分层产生滑移错动,形成了数目众多、厚度极小(小于10 mm ) 的子分层,使十七层煤顶板下位分层成为具有工程意义上的软岩。(2)下位软岩持续水平移动。冒落空间周围较大范围的下位软岩向冒落空洞挤出和弯曲,形成较大的碎胀变形压力。(3)超薄子分层类似散体软岩破坏。超薄子分层随着顶板分层水平移动,因其自身强度低而形成类似散体软岩的破坏。4.4.1回采巷道支护原则煤矿井下回采工作面巷道绝大多数是以层状岩层为顶板,且会受到采动影响。巷道服务期限较短,通常不超过两年。在其服务期间内,顶板、两帮和底板都可能产生移动和变形甚至顶、帮垮落。结合现代支护理论,回采巷道支护应遵循以下几个基本原则:(1) 综合支护原则回采巷道的支护应该是针对顶板、两帮的综合支护。对于有底腻倾向的回采巷道,还应该增加底板支护措施。(2)支护与围岩共同作用原则煤和围岩都具有一定的自承及承载能力。采用及时有效的支护手段以保证回采巷道围岩的整体性,使支护和围岩结合起来,形成一个整体承载结构共同支承围岩载荷。由此在提高回采巷道围岩稳定性的同时,将使支护费用明显减少。(3)控制原则为了充分发挥巷道围岩的自承能力,应允许巷道围岩产生一定量的位移和变形。然而围岩过度的位移和变形将导致其自身结构性破坏,使巷道周边的围岩丧失自承能力,在巷道围岩稳定性降低的同时,给巷道支护又增加了因围岩松动而产生的松动载荷。因此,回采巷道支护必须将巷道围岩的位移和变形控制在一定限度内,保持围岩完整,使其不丧失自身承载能力。所采用的支护要求及时主动承载,且需具有一定柔度。(4)短期临时加强支护原则回采巷道不可避免要受到工作面采动影响。然而,由于回采工作面前方支承压力明显影响的范围小,一般在15-25 m ,且作用时间短, 一般在5-10 天。巷道支护始终采用一种针对巷道受采动影响时的支护形式,在技术经济上显然是不合理的。因此,回采巷道基本支护形式的选择应以考虑原岩应力场内静压作用为主。当巷道受到回采工作面采动影响时,在巷道内增设具有较大初撑力和刚度的短期临时加强支护,以改变巷道支护特性, 提高巷道支护结构的整体承载能力,使围岩迅速达到新的稳定状态。4.4.2 特殊复合顶板主要控制手段及其技术特征采用锚杆加固并配合其它控制手段使顶板在其服务期限内保持相对完整,从而实现支护与围岩的共同承载,是十七层煤回采巷道特殊复合顶板控制的合理方案。而控制的关键是在顶板风化前、自稳期间内形成有效支护 围岩自承载体系。因此,针对十七层煤回采巷道超薄复层特殊复合顶板所采取的主要控制手段及其技术特征见表4-2 。表4-2 十七煤层顶板主要控制手段及其技术特征4.4.3 顶板支护方案由前述分析可知,东荣二矿十七层煤回采巷道超薄复层的特殊复合顶板的变形呈现复合顶板(保持相对完整) 和类似散体软岩(破裂垮落后) 两种变形特征,由此增加了顶板岩层控制的难度。同时该顶板岩层特性及分层厚度、节理裂隙发育程度等即使在同一井田也因区域不同呈现较大差异,这无疑更增加了十七层煤顶板控制的难度。这也导致东荣二矿尽管尝试了现今几乎所有的回采巷道支护方法,却未能找到一种能完全有效地控制该顶板的支护方法。因此,首先应找出显示区域顶板岩层稳定性特征的重要参数,再根据现场观测及顶板岩层的各分层力学性能测试结果及理论分析结论,针对不同需要采用不同的支护方案,经过井下工业性试验并对试验巷道进行围岩收敛观测,从而形成由系列方案组成的东荣二矿十七层煤回采巷道超薄复层特殊复合顶板支护方案。根据十七层煤回采巷道顶板移动破坏规律和节理、裂隙发育程度选择如下岩层稳定性参数:(1)顶板表层泥岩风化、剥离时间t1;(2)分层自稳时间t2;(3)十七层煤回采巷道锚杆支护模型有效高度h。根据上述参数不同取值的组合确定十七层煤回采巷道特殊复合顶板的系列支护方案,见表4-3 所列。表4-3 顶板支护方案4.4.4 回采巷道中特殊复合顶板的支护技术的评价与效果上述顶板控制系列方案及科学的设计方法,从根本上解决了十七层煤回采巷道支护难题,为实现十七层煤的正常回采扫清了障碍。由此,该煤层的实际回采能力成倍地提高。巷道支护费用却降低了74.69 %,由此取得直接经济效益531.31万元。该项技术在东荣矿区推广应用后,每年可带来数千万元的直接经济效益和近亿元的间接经济效益。同时,该项研究成果可应用于其他煤矿复合顶板尤其是软弱薄层复合顶板的支护。推广应用该项成果必须针对顶板具体条件实施具体的观测、力学参数测定、模型计算和井下工业性试验,确定科学的技术方案和设计参数。同时,还必须加强工程质量管理,严格保证施工质量。5 小结复合顶板下回采巷道的锚杆支护技术、锚网索联合支护技术、钢带锚网支护技术和特殊复合顶板的支护技术方案是目前比较有效并受大家认可的几种回采巷道顶板管理方案。复合顶板下的回采巷道使用锚杆支护可以完全经受住静动压的影响,锚杆支护可以替代棚子支护,并且采用锚杆支护形式还能有效的控制顶板的稳定性和完整性,使岩层处在一种动态后的稳定状态,避免了局部冒顶事故的发生。此外,采用锚杆支护省掉了放炮后扶棚子的工作量,减轻了工人的劳动强度,这种巷道支护的改变在技术上是可行的, 安全上是可靠的;在复合顶板下的回采巷道使用锚网粱索复合联合支护是可行的。在一定的地质条件下支护参数在采动影响阶段以外能较好的控制住巷道的围岩变形,满足安全生产的需要, 但是在采动影响剧烈阶段围岩变形大,需要进一步优化支护参数或进行二次支护。对于锚网索支护巷道,施工质量的好坏直接影响着支护效果,在材料的质量上和施工技术上加强管理,优化施工设备还可以达到更优的效果。钢带锚网支护实际上是一种以锚杆为支护主体,以钢带和金属网为连接件的联合支护结构。锚杆通过钢带和金属网不仅可使单根锚杆的点支护力转变为组合锚杆的面支护力,而且还可在巷道围岩表面形成一个柔性加固带,从而使这种支护结构具有刚柔相济的主动支护作用,其中不仅钢带能使破碎岩块有相互挤压咬合成一体,而且金属网还可以将破碎小岩块兜住,从而有利于保持巷道围岩的稳定性。对于复合顶板回采巷道,采用钢带锚网支护无论是经济上还是支护效果上都比矿用工字钢梯形棚支护显著优越,也比单独的锚杆支护更安全可靠,因此在复合顶板下的回采巷道钢带锚杆支护将是一种值得推广的支护方式。特殊复合顶板的支护技术主要是针对一些像回采巷道顶板整体性破坏后,出现局部冒落,破坏急剧发展呈现类似散体的软岩的破碎状态的顶板支护。复合顶板水平位移,产生的大量超薄分子层、软弱薄层复合顶等很难支护的问题,可以用特殊复合顶板的支护技术得到解决,但需要针对顶板的具体问题和特点进行具体的参数测定、模型计算和井下试验后才可实施。总的来说,无论应用何种技术手段来控制复合顶板下回采巷道的围岩都应因地制宜并具体问题具体分析。为了达到良好的支护效果,在实施各个方案时,还应加强施工管理、注重材料质量、进一步优化施工设备。我相信,随着我们煤炭人的不懈努力,在不久的将来,在保障复合顶板条件下回采巷道的支护的问题上会有新的、更大的突破!参考文献1张国华,梁冰,李凤仪.东荣二矿回采巷道特类复合顶板活动规律分析J.辽宁工程技术大学学报,20042刘俊,刘延明,复合顶板条件下回采巷道围岩控制技术研究.煤炭技术,2011.63 唐德龙,东荣三矿复合顶板回采巷道锚杆支护参数确定J.黑龙江科技信息,2008.4 张国华,张雪峰,蒲文龙,毕业武,复合顶板离层分析与预应力锚杆支护参数确定.辽宁工程技术大学学报(自然科学版),2010.45 王金华,我国煤巷锚杆支护技术的新发展J. 煤炭学报, 2007,32(2):113-118.6康红普,姜铁明,高富强. 预应力锚杆支护参数的设计J. 煤炭学报, 2008,33(7): 721-726. 7 薄玉山,松软复合顶板巷道锚杆支护技术参数选择 J . 中国煤炭, 2007, 33(5) : 42- 44.8 杨光玉,朱衍利,牛伟.复合顶煤巷锚带网加锚索联合支护技术 J . 煤矿安全, 2001, ( 8) : 18- 20.9 宫耀, 尹建国. 大倾角复合顶板煤巷锚索网支护技术 J . 煤炭科学技术, 2005, 33( 7) : 18- 19.10 侯朝炯,郭励生,勾攀峰. 煤巷锚杆支护M . 徐州: 中国矿业大学出版社, 1999.11钱鸣高,石平五,矿山压力及其控制.徐州:中国矿业大学出版社,200312窦林名,邹喜正,曹胜根.煤矿围岩控制与监测.徐州:中国矿业大学出版社,200713孙久政,钟成鼎,李凤义,陈光寒, 回采巷道特殊复合顶板支护技术.煤矿支护,2004.(2) Comprehensive evaluation of water-inrush risk from coal floorsWEI Jiuchuan1,*, LI Zhongjian1, SHI Longqing1, GUAN Yuanzhang2, YIN Huiyong11College of Geology Science and Engineering, Shandong University of Science and Technology, Qingdao 266510, China2Yanzhou Mining Co., Ltd., Jining 272100, ChinaAbstract: Lower groups of coal seams are presently being mined in the Yanzhou coal mining area. We need to evaluate the riskfrom water-inrush from coal floors in order to have safe production in the lower groups of coal seams in mines. Based on a systemati ccollection of hydrogeological data and some data from mined working faces in these lower groups, we evaluated the factorsaffecting water-inrush from coal floors of the area by a method of dimensionless analysis. We obtained the order of the factors affectingwater-inrush from coal floors and recalculated data on depths of destroyed floors by multiple linear regression analysis and obtained new empirical formulas. We also analyzed the water-inrush coefficient of mined working faces of the lower groups of coalseams and improved the evaluation standard of the water-inrush coefficient method. Finally, we made a comprehensive evaluationof water-inrush risks from coal floors by using the water-inrush coefficient method and a fuzzy clustering method. The evaluationresults provide a solid foundation for preventing and controlling the damage caused by water of an Ordovician limestone aquifer inthe lower group of coal seams in the mines of Yanzhou. It provides also important guidelines for lower groups of coal seams in other coal mines.Keywords: water-inrush from floors; fuzzy clustering; factors affecting water-inrush from coal floors; lower groups of coal seams;dimensionless analysis1 IntroductionThe evaluation of water-inrush from coal floors is acomplex problem, related to many factors such as hydrogeology, engineering geology, mining conditions and rock mechanics1. So far, many theories and methods have been proposed to evaluate water-inrush from coal floors, such as the water-inrush coefficient method,the Down Three Zones Theory, a Four-Zone Theory, a Neural Network Method, a Multi-source Information Fusion Method and a Vulnerable Index Method2-7. At present, shallow lower groups of coal seams are being mined and deep exploration is in progress. We have to evaluate the water-inrush risk from coal floors in order to have security of production in the lower groups of coal seam mining.To rank the order of the factors affecting water-inrush from coal floors is a difficult problem. We introduce a dimensionless analytical method to solve this problem. Dimensionless analysis eliminates the impact of dimensions, making this evaluation index comparative, additive and subtractive. It converts raw data into new data by a particular calculation. In other words, it could eliminate the impact of the dimensions of the raw data8-10. We also introduce a fuzzy clustering method to address the problem of limitations in the evaluation of water-inrush from coal floors by the water-inrush coefficient method. Fuzzy clustering is a multivariate cluster method, which classifies many factors according to certain criteria11. It is a simple but efficient method in the evaluation of water-inrush risks from coal floors. The evaluation results can provide a solid foundation for preventing and controlling the damage caused by water from the Ordovician limestone aquifer at the lower groups of coal seam mining in the Yanzhou coal mining area. It should also provide important guidelines for lower level groups of coal seam mining in coal mining districts.2 General hydrogeological situation of mining areaThe Yanzhou coal mining area, a semi circle synclinal basin, is located in Yanzhou city and consists of seven coal mines, including the Nantun, Xinglongzhuang and Baodian mines. The Tangcun mine closed in 2002. The basin belongs to the Carboniferous-Permian (era). The strata include, from top to bottom, Quaternary, Jurassic, Carboniferous, Permian and Ordovician layers. The major coal seams are the 2nd and the 3rd seams in the higher group of coal seams, as well as the 6th, 16th and 17thseams in the lower group of coal seams.The east of Yanzhou coal mining area is cut by the Yishan fault and the south, east, north of the area are bordering coal seam outcrops. As well, its peripheries are bordering the Zouxi and Caowa water sources of the Ordovician limestone and Ziyang anticlines. Thus it is a relatively unattached hydrogeologic unit. There is an abundance of water in the shallow Ordovician limestone and Quaternary sandstone aquifers. The amount of water in other aquifers is not very large. In this mining area, most hydrological types are moderately complex, while they are simple in the Beisu mine and complicated in the Yangcun coal mine.3 Evaluation of factors affecting waterinrush from coal floorsUp till now, there have been many theories and methods concerning the evaluation of water-inrush from coal floors, but none of these have proposed an evaluation of the order in which the factors affect water-inrush from coal floors. We trust our dimensionless analysis will solve this problem.3.1 Standardization process of hydrogeological dataThe various dimensions of factors affecting water-inrush from coal floors are inconvenient for evaluation, so we need to standardize the data. There are many methods for standardization and we have standardized the data in the range from 1 to 1 by the usual method of standard deviations.The principle of the standard deviation method is to standardize the data as follows:where x i are the measured values, x i the sample mean and S i the sample standard deviation. 3.2 Evaluation of factors affecting water-inrush from coal floorsWe made sure major factors affecting water-inrush from coal floors were based on systematic collection of hydrogeological data and data from mined working faces in the lower group of coal seams of the Yanzhou coal mining area. The factors were: head pressure of the Ordovician limestone aquifer, aquifuge thickness(distances between the 17th coal seam and the Ordovician limestone), the geological structure and the amount of water of the Ordovician limestone aquifer. By means of Eq.(1), we drew isoline maps from the data of the factors affecting water-inrush from coal floors.We calculated the water-inrush coefficient (Ts) of the coal mining area by the water-inrush coefficient method and drew the isoline map for the water-inrush coefficient of the 17th coal seam to the depth of the Ordovician limestone. We also evaluated the risk of water-inrush from coal floors by dividing the area into four parts. Our standard of evaluation was: a safe zone where Ts0.06 MPa; a limited danger zone where: 0.06 MPaTs 0.10 MPa; a danger zone where: 0.10 MPa0.15 MPa. This last area, i.e., the extreme danger zone where Ts0.15 MPa, was projected on each isoline map of factors affecting water- inrush from coal floors. In this way, we obtained maps with the proportion of each zone on isoline maps of factors affecting water-inrush from coal floors (Fig. 1). We calculated each factor affecting water-inrush from coal floors on the maps with the following formula: (2)where U is the factor affecting water-inrush from coal floors, Ki the weight assigned to each factor and Si the area of extreme danger zone.Uhead pressure =0.2*138158.7+0.3*344317.9+0.4* 1264548.5+0.5*3338938.5+0.6*3642859.9+0.7*4178448.8+0.8*6561577+0.9*13793440+1*22889017.5=47969221 (m2).We also obtained the factor affecting the thickness of the aquifuge, i.e., Uaquifuge thickness=30612286, Ugeological structure=30092157 and Uwater abundance=23612721 (Table 1). We see that Uhead pressureUaquifuge thicknessUgeological structureUwater abundance. We easily obtained the order of the factors affecting water-inrush from coal floors in the Yanzhou area from our evaluation. Therefore, the scene is dominated by the head pressure of the Ordovician limestone aquifer.4 Evaluation of water-inrush risk from Ordovician limestone aquifer4.1 Depth of destroyed floor formulaStatistical data from national field surveys provided us with the following empirical formulas, in common use, for depths of destroyed floors:h1=0.7007+0.1079Ly (3)h1=0.0085H+0.1665a+0.1079Ly4.3579 (4)where h1 is depth of destroyed floor, m; Ly the slanting length of the working face, m; H the mining depth,m and a the coal seam angle, .Because the mining depth, ranging from 100 to 1000 m in these empirical formulas was too wide, we reclassified the statistical data with a multiple linear regression model. Thus, we obtained the following new formulas:当H650m0.0023H+ 0.1948a+ 0.8775T+ 0.1116- 4.9066 (5)当H650m0.0153H+ 0.3774a+ 3.3402T+ 0.0028- 6.7207 (6) In Eqs.(5) and (6) T is the thickness of the coal seam.The new formulas were applied in calculating the water-inrush coefficient of each coal mine.4.2 Evaluation by water-inrush coefficient method4.2.1 Modified limit of water-inrush coefficientBased on the collection of hydrogeological data of the Yanzhou coal mining area, we calculated the water-inrush coefficient of the 16th and 17th coal seams in mined working faces and found out that the water-inrush coefficients ranged from 0.30 MPa/m to 0.90 MPa/m. Because no accidents have ever occurred at these mined working faces, we could not evaluate the water-inrush risk exactly according to the evaluation standard, i.e., Ts0.06 MPa/m for the safe zone. We increased the safety limit to 0.08 MPa/m given a normal distribution of the data. Thus, the water- inrush coefficient evaluation standards have become: safe zone: Ts0.08 MPa/m; limited danger zone: 0.06 MPa/m Ts0.10 MPa/m; danger zone: 0.10 MPa/m 0.15 MPa/m.4.2.2 Evaluation by water-inrush coefficient methodWe used data from the 17th coal seam of the research area. In general, this seam has been more seriously affected by the Ordovician limestone aquifer towards the east than towards the west. The highest head pressure of the Ordovician limestone aquifer was near the Bu45 drilling hole in the Dongtan coal mine and reached 8.8 MPa. It was low in the south. The mining depth of the 17th coal seam ranged from 117.44 m in the west to 909.12 m, in the east. The vertical distance between the 17th coal seam and the Ordovician limestone ranged from 25.59 to 102.29 m with an average distance of 62.61 m. We evaluated data from 63 drilling holes of coal mines in the research area by the water-inrush coefficient method. Table 2 shows the evaluation results for the Baodian coal mine.4.3 Evaluation by fuzzy clustering methodMany factors in the evaluation of water-inrush risk from coal floors should be considered. This is a complex problem, which cannot be solved by the water-inrush coefficient method. But a fuzzy clustering method can consider many factors simultaneously,which solves the problem that the critical value in the evaluation by the water-inrush coefficient methodcannot do.1) Data standardizationThere are a number of methods to standardize data, two of which are the standard deviation method and the other the range method. We used the first method.2) CalibrationWith calibration, we obtain the similarity coefficients ( ij r ) of the classification objects in order to obtain the similarity matrix ( R ). There are a number of methods for calculating the smilarity coefficients ( ij r ), such as the similarity coefficient method, the angle cosine method and the maximum-minimum method. We used the similarity coefficient method which uses the following formula:where is the count of each column, and the order of data.1) Fuzzy clusteringTransitive closure t()is obtained by the square method from the similarity matrix (). Because cluster analysis results are usually wrong when obtained from the similarity matrix, we need to convert the similar matrix into an equivalent matrix. The transitive closure is the equivalent matrix.2) Drawing a dynamic clustering figure from theequivalent matrix t()After completing these steps, we evaluated the factors affecting water-inrush from coal floors (in this case from the 17th coal seam), i.e., the distances between the 17th coal seam and the Ordovician limestone and the head pressure of the Ordovician limestone aquifer. Table 3 shows the evaluation results, also for the Baodian coal mine. Table 3 Evaluation results by fuzzy clustering 4.4 Comprehensive evaluation of water-inrush risk from Ordovician limestone aquiferWe know that the head pressure of the Ordovician limestone aquifer is dominant among the factors affecting water-inrush from coal floors. We made a comparative analysis of the water-inrush coefficient evaluation results and from the fuzzy clustering evaluation results. Finally, we obtained the evaluation results of water-inrush risk from the Ordovician limestone aquifer (Table 4), again for the Baodian coal mine. The results show that the Nantun, Beisu and Yangcun coal mines are basically in the safe zone, not in the danger zone nor in the extreme danger zone. So,there is no risk of water-inrush in these three mines,none of which had any water-inrush accidents untilnow. The Xinglongzhuang and Dongtan coal mines are essentially in the danger zone or the extreme danger zone. We need to pay close attention in order to prevent damage or control it if it does occur, caused by water-inrush from coal floors in the lower group of coal seams. Although the Baodian coal mine has a few danger zones, it is considered a safe mine because the head pressure of the Ordovician limestone aquifer is low and its geological structure simple. We think the results are reasonable because the drilling density basically covers all coal mines.5 Conclusions1) We evaluated the factors affecting water-inrush from coal floors in the lower group of coal seam mines of the Yanzhou coal mining area by dimensionless analysis. We obtained the following order of the factors affecting water-inrush from coal floors,i.e.: head pressure of Ordovician limestone aquifer aquifuge thicknessgeological structureamount of water of Ordovician limestone aquifer. The head pressure of the Ordovician limestone aquifer is dominant.2) We recalculated the statistical data of depth of destroyed floors by using multiple linear regression analysis and obtained new empirical formulas. These provided a solid foundation for the evaluation of water- inrush risk from coal floors. We also analyzed the water-inrush coefficient of mined working faces of the lower group of coal seams and improved the evaluation standard of the water-inrush coefficient method.3) Our comprehensive evaluation of the risk of water-inrush from coal floors by the water-inrush coefficient and fuzzy clustering methods, improved the objectivity and accuracy of the evaluation of water- inrush risk. These evaluation results provide a solid foundation for preventing and controlling the damage caused by the water from the Ordovician limestone aquifer in the lower groups of coal seams mines in the area. Our results should also provide important guidelines for the exploitation of the lower group of coal seams in other coal mines.AcknowledgementsWe gratefully acknowledged the supports from the Natural Science Foundation of Shandong Province (No.Y2007F46), the Doctor Disciplines Special Scientific Research Foundation of Ministry of Education (No.20070424005), China Coal Industry Association Science and Technology Research Instructive Plan (No.MTKJ2009-290) and the National Natural Science Foundation of China (No.50539080).References1 Liu W T, Zhang W Q, Li J X. An evaluation of the safety of floor water-irruption using analytic hierarchy process and fuzzy synthesis methods. Journal of China Coal Society, 2000, 25(3): 278-282. (In Chinese)2 Wei J C, Li B Y. Security evaluation of coal mining above the confined aquifers. Coal Geology & Exploration, 2000(4): 57-59. (In Chinese)3 Li B Y.“Down three zones”in the prediction of the water inrush from coalbed floor aquifer-theory,development and applicatio. Journal of Shandong Institute of Mining and Technology, 1999, 18(4): 11-18. (In Chinese)4 Shi L Q, Han J. Theory and practice of dividing coal mining area floor into four-zone. Journal of China University of Mining &Technology, 2005, 34(1): 16-23. (In Chinese)5 Liao W, Zhou R Y, Li S Q. Study on the non-linear forecast methods for water inrush from coal floor based on wavelet neural network. China Safety Science Journal, 2006, 16(11): 24-28. (In Chinese)6 Zhang X B, Cheng J L, Li L. Multi-sources information fusion method and its applications in prediction of water inrush of ordovician limestone aquifers in colliery. Science of Surveying and Mapping, 2006(6): 146-148. (InChinese)7 Wu Q, Zhang Z L, Zhang S Y. A new practical methodology of the coal floor water bursting evaluating: the vulnerable index method. Journal of China Coal Society, 2007, 32(11): 1121-1126. (In Chinese)8 Guo Y J, Yi P T. Character Analysis of linear dimensionless methods. Statistical Research, 2008, 25(2): 93-100.9 Qin S K. Principle and Application of Comprehensive Evaluation. Beijing: Publishing House of Electronics Industry, 2003. (In Chinese)10 Liu Y Y, Wang X D, Zai J M. Dimensionless analysis for nonlinear behavior of single pile in heterogeneous soil. Building Science, 2009, 25(1): 48-51.11 Cao B Y. Application of Fuzzy Mathematics and Systems. Beijing: Science Press, 2005. (In Chinese)煤层突水风险的综合评价摘要:兖州矿区的深部煤层目前正在开采。我们需要进行对煤层突水的风险评估,以确保较深部煤层开采的安全。根据系统收集的水文资料和数据和以往采煤工作面在这些深部的煤层的开采情况,我们决定对该地区的煤层用量纲分析的方法进行分析突水。我们获得煤层突水影响因素的顺序和摧毁地面的深度数据后,通过多元线性回归分析计算,取得了新的经验公式。我们还分析了突水系数较低的群体煤层开采工作面,提高了突水系数法的评价标准。最后,我们通过突水系数法和模糊聚类的方法对煤层的突水风险做出综合评价。评价结果为预防和控制兖州矿区由奥陶系灰岩含水层的在煤层的突水所造成的损害提供了一个坚实的基础。它也对其他煤矿的深部煤层群开采提供了的重要指导方针。关键词:地板突水;模糊聚类;从煤层突水影响因素;深部煤层群;量纲分析。1引言在煤层底板突水的问题上,会涉及到许多因素,如水文地质,工程地质,开采条件和岩石力学1。到目前为止,许多理论和方法已提出用来评估突水系数法,如下三带理论,四区理论,神经网
温馨提示:
1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
2: 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
3.本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
提示  人人文库网所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
关于本文
本文标题:新源煤矿0.9Mta新井设计含5张CAD图.zip
链接地址:https://www.renrendoc.com/p-41845560.html

官方联系方式

2:不支持迅雷下载,请使用浏览器下载   
3:不支持QQ浏览器下载,请用其他浏览器   
4:下载后的文档和图纸-无水印   
5:文档经过压缩,下载后原文更清晰   
关于我们 - 网站声明 - 网站地图 - 资源地图 - 友情链接 - 网站客服 - 联系我们

网站客服QQ:2881952447     

copyright@ 2020-2025  renrendoc.com 人人文库版权所有   联系电话:400-852-1180

备案号:蜀ICP备2022000484号-2       经营许可证: 川B2-20220663       公网安备川公网安备: 51019002004831号

本站为文档C2C交易模式,即用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知人人文库网,我们立即给予删除!