高中数学 2.2 直线、平面平行的判定及其性质 2.2.4 平面与平面平行的性质课件 新人教A版必修2.ppt_第1页
高中数学 2.2 直线、平面平行的判定及其性质 2.2.4 平面与平面平行的性质课件 新人教A版必修2.ppt_第2页
高中数学 2.2 直线、平面平行的判定及其性质 2.2.4 平面与平面平行的性质课件 新人教A版必修2.ppt_第3页
高中数学 2.2 直线、平面平行的判定及其性质 2.2.4 平面与平面平行的性质课件 新人教A版必修2.ppt_第4页
高中数学 2.2 直线、平面平行的判定及其性质 2.2.4 平面与平面平行的性质课件 新人教A版必修2.ppt_第5页
已阅读5页,还剩29页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

第二章 点 直线 平面之间的位置关系 2 2直线 平面平行的判定及其性质 2 2 4平面与平面平行的性质 自主预习学案 2010年在上海举行的世界博览会给全世界的游客留下了深刻的印象 作为东道主的中国国家馆被永久保留 成为上海市的又一标志性建筑 中国国家馆表达了 东方之冠 鼎盛中华 天下粮仓 富庶百姓 的中国文化的精神与气质 展馆共分三层 这三层给人以平行平面的感觉 平面与平面平行的性质定理 平行 a b 解析 圆台的上 下底面互相平行 平面 与圆台的上 下底面分别相交 所得交线m与n平行 c 解析 根据两个平面平行的性质可知 这两个平面平行 a 解析 ad bc ad与bc确定一个平面 ab dc ab dc 四边形abcd是平行四边形 ad bc 互动探究学案 命题方向1 对面面平行性质的理解 c 解析 1 因为平面 平面 直线a 直线b 所以直线a与直线b无公共点 当直线a与直线b共面时 a b 当直线a与直线b异面时 a与b所成的角大小可以是90 综上知 都有可能出现 共有3种情形 故选c 2 正确 证明如下 如图 在平面 内取两条相交直线a b 分别过a b作平面 使它们分别与平面 交于两相交直线a b 因为 所以a a b b 又因为 同理在平面 内存在两相交直线a b 使得a a b b 所以a a b b 所以 正确 若直线a与平面 平行或直线a 则由平面 平面 知a与 无公共点或a 这与直线a与 相交矛盾 所以a与 相交 正确 如图 过直线pq作平面 a b 由 得a b 因为pq pq 所以pq b 因为过直线外一点有且只有一条直线与已知直线平行 所以直线a与直线pq重合 因为a 所以pq 规律方法 常用的面面平行的其他几个性质 1 两个平面平行 其中一个平面内的任意一条直线平行于另一个平面 2 夹在两个平行平面之间的平行线段长度相等 3 经过平面外一点有且只有一个平面与已知平面平行 4 两条直线被三个平行平面所截 截得的对应线段成比例 5 如果两个平面分别平行于第三个平面 那么这两个平面互相平行 解析 若a 则显然满足题目条件 若a 过直线a作平面 b c 于是由直线a 平面 得a b 由 得b c 所以a c 又a c 所以a a 或a 命题方向2 平面与平面平行性质定理的应用 规律方法 应用平面与平面平行性质定理的基本步骤 对平面与平面平行的性质定理理解不正确 忽略 第三个平面 这一条件 错解 这个说法正确 错因分析 忽略了ab cd可能异面的情况 当ab cd异面时 ac与bd不平行 思路分析 ab cd共面时 ac bd ab cd异面时 ac 但ac与bd不平行 同理bd 但bd与ac不平行 正解 这个说法错误 转化与化归思想在线面 面面平行性质定理中的应用 思路分析 直接用判定定理证明较困难 可通过证明过mn的平面与平面aa1b1b平行 得到mn 平面aa1b1b np 平面aa1b1b ab 平面aa1b1b np 平面aa1b1b mp bb1 mp 平面aa1b1b bb1 平面aa1b1b mp 平面aa1b1b 又mp 平面mnp np 平面mnp mp np p 平面mnp 平面aa1b1b mn 平面mnp mn 平面aa1b1b 规律方法 1 证明线面平行的方法主要有三种 应用线面平行的定义 反证法 应用线面平行的判定定理 应用面面平行的性质 即 两个平面平行时 其中一个平面内的任意一条直线都平行于另一个平面 2 应用平面与平面平行的性质证题的关键是找到过直线和已知平面平行的平面并给予证明 这时注意线线平行 线面平行和面面平行之间的相互转化 解析 本题考查线面平行的性质 a是一条直线 a 或a与 相交或在平面 内 当a 时 只有一个 当a与 相交或在平面 内时 不存在 故选d d 解析 分别在平面

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论