




已阅读5页,还剩25页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
3 1 1椭圆及其标准方程 一 二 思考辨析 一 椭圆的定义我们把平面内到两个定点f1 f2的距离之和等于常数 大于 f1f2 的点的集合叫作椭圆 这两个定点f1 f2叫作椭圆的焦点 两个焦点f1 f2间的距离叫作椭圆的焦距 特别提醒1 当动点m满足 mf1 mf2 常数 f1f2 时 动点m的轨迹为椭圆 2 当动点m满足 mf1 mf2 常数 f1f2 时 动点m的轨迹为以f1 f2为两端点的线段 3 当动点m满足 mf1 mf2 常数 f1f2 时 动点m的轨迹不存在 一 二 思考辨析 做一做1 下列说法正确的是 a 已知f1 6 0 f2 6 0 到f1 f2两点的距离之和为12的点的轨迹是椭圆b 已知f1 6 0 f2 6 0 到f1 f2两点的距离之和为8的点的轨迹是椭圆c 到点f1 6 0 f2 6 0 两点的距离之和等于点m 10 0 到f1 f2的距离之和的点的轨迹是椭圆d 到f1 6 0 f2 6 0 距离相等的点的轨迹是椭圆解析 a b d三个选项中 都不满足椭圆定义中2a f1f2 的条件 只有c选项满足 因此选c 答案 c 一 二 思考辨析 二 椭圆的标准方程 一 二 思考辨析 名师点拨1 椭圆的标准方程中的 标准 指的是椭圆的中心必须在原点 且以两定点所在直线为x轴 或y轴 两定点所连线段的垂直平分线为y轴 或x轴 2 椭圆标准方程的形式 等号左边是 平方 平方 右边是 1 3 焦点在x轴上 标准方程中x2项的分母较大 焦点在y轴上 标准方程中y2项的分母较大 因此由椭圆的标准方程判断焦点位置时要根据方程中分母的大小来判断 简记为 焦点位置看大小 焦点随着大的跑 一 二 思考辨析 a 4b 5c 7d 8解析 由已知得 a2 m 2 b2 10 m 又焦距为4 c 2 m 2 10 m 4 解得m 8 答案 d a 2b 4c 6d 8解析 由椭圆的标准方程可知 a2 25 a 5 由椭圆的定义知 pf1 pf2 2a 10 又 pf1 6 pf2 4 答案 b 一 二 思考辨析 判断下列说法是否正确 正确的在后面的括号内打 错误的打 1 平面内与两个定点的距离的和等于常数的点的轨迹就是椭圆 2 椭圆的焦点只能在坐标轴上 4 两种椭圆方程中 有时a b 0 有时b a 0 探究一 探究二 探究三 探究四 椭圆定义的应用 例1 已知b c是两个定点 bc 6 且 abc的周长等于16 求顶点a的轨迹方程 思维点拨 选取线段bc的中点为坐标原点 建立适当的直角坐标系 由b c为两定点 a为动点 研究 ab ac 是否为定值 并比较与 bc 的大小关系 从而判断点a的轨迹图形形状 进而得到轨迹方程 探究一 探究二 探究三 探究四 解 如图 建立平面直角坐标系 使x轴经过点b c 原点o与bc的中点重合 由已知 ab ac bc 16 bc 6 有 ab ac 10 6 即点a的轨迹是椭圆 且2c 6 2a 16 6 10 c 3 a 5 b2 52 32 16 但当点a在直线bc上 即y 0时 a b c三点不能构成三角形 探究一 探究二 探究三 探究四 反思感悟找出点a的轨迹满足 ab ac 10 6后 知a的轨迹是椭圆 用定义法求出其方程 但要注意去掉不符合题意的点 5 0 5 0 探究一 探究二 探究三 探究四 变式训练1过椭圆4x2 y2 1的一个焦点f1的直线与椭圆交于a b两点 f2是椭圆的另一个焦点 求 abf2的周长 解 根据题意画出图形如图所示 a b在椭圆4x2 y2 1上 a2 1 2a 2 af1 af2 2a 2 bf1 bf2 2a 2 af1 bf1 af2 bf2 4 即 ab af2 bf2 4 abf2的周长为4 探究一 探究二 探究三 探究四 求椭圆的标准方程 例2 求适合下列条件的椭圆的标准方程 1 两个焦点的坐标分别是 4 0 4 0 椭圆上任意一点p到两焦点的距离的和等于10 思维点拨 根据题意 先判断椭圆的焦点位置 再设出椭圆的标准方程 从而确定a b的值 探究一 探究二 探究三 探究四 解 1 椭圆的焦点在x轴上 c 4 2a 10 b2 a2 c2 9 2 椭圆的焦点在y轴上 探究一 探究二 探究三 探究四 3 方法一 探究一 探究二 探究三 探究四 方法二设椭圆的一般方程为ax2 by2 1 a 0 b 0 a b 反思感悟待定系数法求椭圆的标准方程的思路 首先要 定位 即确定焦点所在的坐标轴 从而确定椭圆方程的类型 其次是 定量 即利用条件确定方程中a b的值 若不能确定焦点的位置 可分类设出方程或设两种标准方程的统一形式 统一形式 mx2 ny2 1 m 0 n 0 m n 或 1 m 0 n 0 m n 探究一 探究二 探究三 探究四 探究一 探究二 探究三 探究四 椭圆标准方程的应用 a 3b 5c 3或5d 3思维点拨 椭圆的标准方程有两种 由于题目所给条件不能确定焦点所在坐标轴 因此需要分类讨论 解析 当焦点在x轴上时 a2 4 b2 m 由2c 2得c 1 4 m 1 m 3 当焦点在y轴上时 a2 m b2 4 由2c 2得c 1 m 4 1 m 5 综上可知 m 3或m 5 答案 c 探究一 探究二 探究三 探究四 反思感悟已知椭圆方程求焦点坐标时 先确定所给方程是否为标准方程 若不是 需化为标准方程 再根据椭圆的标准方程确定a b c的值 探究一 探究二 探究三 探究四 2 求椭圆mx2 y2 m m 0 的焦点坐标 探究一 探究二 探究三 探究四 探究一 探究二 探究三 探究四 焦点三角形问题 例4 已知椭圆 a b 0 上一点p f1 f2为椭圆的焦点 若 f1pf2 求 pf1f2的面积 思维点拨 根据椭圆的定义可知 pf1 pf2 2a 两边平方可得 pf1 2 pf2 2 2 pf1 pf2 4a2 在 pf1f2中 由余弦定理得 pf1 2 pf2 2 2 pf1 pf2 cos f1pf2 4c2 两式相减可求 探究一 探究二 探究三 探究四 解 如图 由椭圆定义 得 pf1 pf2 2a 而在 pf1f2中 由余弦定理得 pf1 2 pf2 2 2 pf1 pf2 cos f1f2 2 4c2 pf1 pf2 2 2 pf1 pf2 2 pf1 pf2 cos 4c2 即4 a2 c2 2 pf1 pf2 1 cos 反思感悟与焦点三角形有关的计算或证明 应考虑用椭圆的定义及三角形中边与角的关系 应用余弦定理或正弦定理 来解决 探究一 探究二 探究三 探究四 2 求 pf1 pf2 的最大值 解 1 设 pf1 m pf2 n 由题意知a2 100 b2 64 则c2 a2 b2 36 故a 10 c 6 根据椭圆的定义 有m n 20 即 m n 2 3mn 144 探究一 探究二 探究三 探究四 2 a 10 根据椭圆的定义 有 pf1 pf2 20 当且仅当 pf1 pf2 时等号成立 pf1 pf2 的最大值是100 12345 1 椭圆上一点p到两焦点f1 f2的距离之差为2 则 pf1f2的形状为 a 直角三角形b 锐角三角形c 钝角三角形d 等边三角形解析 由 pf1 pf2 8 pf1 pf2 2 解得 pf1 5 pf2 3 又 f1f2 4 故满足 pf2 2 f1f2 2 pf1 2 pf1f2为直角三角形 答案 a 12345 2 已知f1 1 0 f2 1 0 是椭圆c的两个焦点 过f2且垂直于x轴的直线交c于a b两点 且 ab 3 则c的方程为 解析 设出椭圆的方程 依据题目条件用待定系数法求参数 由题意知椭圆焦点在x轴上 且2c f1f2 2 答案 c 12345 直线l与椭圆相交于a b两点 且 af2 ab bf2 成等差数列 则 ab af1 af2 2a 2 bf1 bf2 2 相加得 af1 bf1 af2 bf2 4 af2 bf2 4 af1 bf1 4 ab af2 ab bf2 成等差数列 2 ab af2 bf2 12345 f1pf2 60 则
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年传染病及突发公共卫生事件防治知识培训试题(附答案)
- 学校值班管理制度
- 2025年医学检验(士)过关检测试卷附参考答案详解【完整版】
- 2025计算机三级预测复习(轻巧夺冠)附答案详解
- 2025邮政行业职业技能鉴定练习题及参考答案详解(A卷)
- 车站安全员工培训考及答案
- 安全员培训班考及答案
- 2025酒、饮料及精制茶制造人员考试彩蛋押题含答案详解【完整版】
- 难点解析-人教版8年级数学下册《一次函数》专项训练试卷(详解版)
- 2024年临床执业医师每日一练试卷带答案详解(完整版)
- (完整版)人教八年级下册期末物理测试真题经典及解析
- 储能项目竣工验收与交付方案
- 2025秋人教版(2024)二年级上册数学教学计划
- 桥梁河床断面测量课件
- 中药质量检测技术
- 工程开工方案模板(3篇)
- 2025年部编版新教材语文八年级上册教学计划(含进度表)
- 普外科肛肠科科室介绍
- 事业单位工勤人员技师考试职业道德复习试题及答案
- 投标技能提升培训课件
- 2025年三级安全教育试题及答案
评论
0/150
提交评论