


全文预览已结束
下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
27.2.2 相似三角形一、教学目标1 进一步巩固相似三角形的知识 2 能够运用三角形相似的知识,解决不能直接测量物体的长度和高度(如测量金字塔高度问题、测量河宽问题、盲区问题)等的一些实际问题 3 通过把实际问题转化成有关相似三角形的数学模型,进一步了解数学建模的思想,培养分析问题、解决问题的能力二、重点、难点1重点:运用三角形相似的知识计算不能直接测量物体的长度和高度2难点:灵活运用三角形相似的知识解决实际问题(如何把实际问题抽象为数学问题)三、课堂引入问:世界现存规模最大的金字塔位于哪个国家,叫什么金字塔?胡夫金字塔是埃及现存规模最大的金字塔,被喻为“世界古代七大奇观之一” 塔的个斜面正对东南西北四个方向,塔基呈正方形,每边长约230多米据考证,为建成大金字塔,共动用了10万人花了20年时间原高146.59米,但由于经过几千年的风吹雨打,顶端被风化吹蚀,所以高度有所降低在古希腊,有一位伟大的科学家叫泰勒斯一天,希腊国王阿马西斯对他说:“听说你什么都知道,那就请你测量一下埃及金字塔的高度吧!”,这在当时条件下是个大难题,因为是很难爬到塔顶的你知道泰勒斯是怎样测量大金字塔的高度的吗?四、例题讲解 例1(测量金字塔高度问题) 分析:根据太阳光的光线是互相平行的特点,可知在同一时刻的阳光下,竖直的两个物体的影子互相平行,从而构造相似三角形,再利用相似三角形的判定和性质,根据已知条件,求出金字塔的高度解:略 问:你还可以用什么方法来测量金字塔的高度?(如用身高等) 解法二:用镜面反射(如图,点a是个小镜子,根据光的反射定律:由入射角等于反射角构造相似三角形)(解法略)例2(测量河宽问题)为了估算河的宽度,我们可以在河对岸选定一个目标点p,在近岸取点q和s,使点p、q、s共线且直线ps与河垂直,接着在过点s且与ps垂直的直线a上选择适当的点t,确定pt与过点q且垂直ps的直线b的交点r.如果测得qs=45m,st=90m,qr=60m,求河宽pqstpqrba 分析:设河宽pq长为x m ,由于此种测量方法构造了三角形中的平行截线,故可得到相似三角形,因此有,即再解x的方程可求出河宽解:略问:还可以用什么方法来测量河的宽度? 解法二:如图构造相似三角形(解法略) 例3(盲区问题)已知左、右并排的两棵大树的高分别是ab=8m和cd=12m,两树的根部的距离bd=5m.一个身高1.6m的人沿着正对这两棵树的一条水平直路l从左向右前进,当他与左边较低的树的距离小于多少时,就不能看到右边较高的树的顶端点c?分析:设观察者眼晴的位置(视点)为f,cfk和afh分别是观察点c、a的仰角,区域和区域都在观察者看不到的区域(盲区)之内。解:五、课堂练习1 在同一时刻物体的高度与它的影长成正比例在某一时刻,有人测得一高为1.8米的竹竿的影长为3米,某一高楼的影长为60米,那么高楼的高度是多少米?2 小明要测量一座古塔的高度,从距他2米的一小块积水处c看到塔顶的倒影,已知小明的眼部离地面的高度de是1.5米,塔底中心b到积水处c的距离是40米.求塔高? 六、作业1 教材本节练习1和练习22 如图,小明在打网球时,使球恰好能打过网,而且落在离网5米的位置上,求球拍击球的高度h(设网球是直线运动)3 小明想利用树影测量树高,他在某一时刻测得长为1m的竹竿影长0.9m,但当他马上测量树影时,因树
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 充电桩支付系统集成方案
- 孕产妇儿童临床用药管理培训考核试题(附答案)
- 2025年USB吸尘器行业研究报告及未来行业发展趋势预测
- 风电设备维护与检修计划
- 2025年不饱和聚酯树脂行业研究报告及未来行业发展趋势预测
- 手术室器械物品清点制度
- 心血管内科考试题库及答案
- 急诊科患者身份识别、转接与登记相关制度
- 2025年液压机械及部件行业研究报告及未来行业发展趋势预测
- 2025年保暖内衣行业研究报告及未来行业发展趋势预测
- 教师专业发展与名师成长(学校师范专业公共课)
- 现代化智能仓储物流中心建设的项目解决的方案课件
- 艾滋病检测筛查实验室申请表
- 媒介批评导论课件
- 畜牧兽医法规课件
- 文化政策与法规课件
- 木栈道专项施工方案
- 露天矿开采技术课件汇总全套ppt完整版课件最全教学教程整套课件全书电子教案
- 部编人教版九年级上册初中历史 第1课 古代埃及 教案(教学设计)
- 钢结构钢梁计算(PPT33张)
- 新中式餐厅设计答辩PPT
评论
0/150
提交评论