CFX12_Multiphase_Nuclear_06_Phase_Change.ppt_第1页
CFX12_Multiphase_Nuclear_06_Phase_Change.ppt_第2页
CFX12_Multiphase_Nuclear_06_Phase_Change.ppt_第3页
CFX12_Multiphase_Nuclear_06_Phase_Change.ppt_第4页
CFX12_Multiphase_Nuclear_06_Phase_Change.ppt_第5页
已阅读5页,还剩61页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

Lecture6ModelsforPhaseChange CFXMultiphasefortheNuclearIndustry Overview PhaseChangePhenomenaThermalPhaseChangeWallBoilingModelCavitationCavitationPhenomenaCavitationModelingCavitationExamples Introduction Interphasemasstransfercanproceedbybulkexchangeofmaterialbetweenphases boilingcondensationsublimationfreezingmeltingcavitationflashingInterphaseexchangeofmassmaybeeitherthermallyormechanicallydriven PhaseChangeModels Thermal DrivenbytemperaturedifferencesApplications CondensationBoilingPoolBoilingWallBoilingMelting Mechanical DrivenbypressuredifferencesApplications CavitationFlashing PhaseChangePhenomena ThermalPhaseChange AdditionorremovalofheattoaphaseinducesaphasechangeasthetemperaturerisesaboveorfallsbelowthesaturationtemperatureEnergybalanceatphaseinterfaceInterfacialmasstransferratesNote theremustbeinterfacialareaforthermalphasechangetooccur i e bothphasesmustbepresent InterfacialEnergyBalance Steady stateenergybalance Liquid Vapour Interface Interfacialheattransferrates InterfacialEnergyBalance Balanceequation Liquid Vapour Interface Interfacialenthalpies saturationvaluesHeattransferratesfromempiricalcorrelationsDifferentoncontinuousanddispersedside HeatTransferCoefficents Continuousside v Ranz Marshallcorrelation Continuous Correlations casedependentHughmark HeatTransferCoefficents Dispersedside l Zeroresistance Continuous Droplets approximatesolutionofheattransferequationinasphere 1 CondensationExample ExperimentatLehrstuhlf rThermischeKraftanlagen TUM nchenCondensationontofreesurfaceforsteam liquidwater 128 790 Thermocouples Adiabaticwall Adiabaticwall Steam Water TemperatureProfileMeasuredasaFunctionofHeight CondensationExample Vapour Saturatedvapouratconstantpressure Liquid Large heattransfercoefficientVapour laminarLiquid turbulent k Turbulencedampingatfreesurface Noenergyequationinvapourphase CondensationExample Liquidvolumefraction Grid121 60 y 40 CondensationExample VerticalTemperatureprofileatthermocouplelocation T C Increaseduetolatentheatfromcondensation VapourLiquid CondensationExample StationaryDroplet Vapour Saturatedvapouratconstantpressure Liquid Heattransfercoefficientbasedon Noenergyequationinvapourphase Initiallysubcooledliquiddropletincontactwithsaturatedvapor heatsupascondensationtakesplaceuntilsaturationtemperatureisreachedDimensionlesstemperatureofdroplet q predictedasafunctionofdimensionlesstime ascharacterizedbytheFouriernumber Fo CondensationExample StationaryDroplet WallBoilingModelinANSYSCFX BetaFeaturein11 0 RPIWallBoilingModel Forsubcooledflowswithsuperheatedwalls standardthermalphasechangemodelsforbulkboiling condensationwillunderpredictrates bubblesformattinynucleationcavitiesonwallsandgrowTheRPIWallBoilingmodelprovidesamechanisticmodelforwalldrivenboiling originallydevelopedbyPodowskiandco workersTheRPIwallboilingmodelisfullyreleasedinANSYSCFX12 0afterhavingbeenpreviouslyavailableonlyasabetafeature RegimeChangesforaBoilingLiquid RPIWallBoilingModel RPIWallBoilingModel Sub GridScaleModelforNucleateBoilingSimilartoTurbulentWallFunctionsSimilartomodelimplementedinCFX 4Plusimprovementstoachievegridindependence EgorovandMenter CustomisedimplementationexistedinCFX 11Plususabilityimprovements AllwallheattransferBC ssupported SpecifiedHeatFlux SpecifiedTemperature SpecifiedHeatTransferCoefficient BoilingatCHTboundariessupportedUseslaggedwalltemperature hencenotasrobustasdomainwalls RPIWallBoilingModel DeterminesHeatFluxPartitionatWall Q Qc Qq QeQc ConvectiveHeatTransferDeterminedbyTurbulentWallFunctionQq QuenchingHeatTransferDepartureofabubblefromheatedsurface coolingofsurfacebyfreshwater Qe EvaporativeHeatTransferDeterminedbyphysicalsub modelsonthesub gridscale RPIWallBoiling SubModels SeveralSubModels Nucleationsitedensity LemmartandChawla BubbleDepartureDiameter TolubinskyandKostanchuk BubbleDepartureFrequency Cole BubbleDepartureWaitingTime RPIWallBoiling SubModels Wallareafractioninfluencedbybubbles clipped WallareafractioninfluencedbysinglephaseconvectionConvectiveHeatTransfer TurbulentWallFunction QuenchingHeatTransferEvaporativeHeatTransfer RPIWallBoiling SubModels MeshIndependenceDefaultbubbledeparturediameterdependsona nearwallliquidtemperature ExperimentalcorrelationusespipecentrevalueCFX 4usesvalueatcentreofcontrolcelladjacenttowall meshdependent CFX 5useslogarithmicwallfunctiontocorrectthistoanestimatedvalueatfixedyplusvalue 250 useradjustable hencemeshindependentSimilarcorrectionprocedureisappliedtoquenchingheattransfercoefficient RPIWallBoiling SubModels Sub ModelDefaultsOriginallytunedforpressurisedwaterMayneedretuningforothersituationsPossibletochangedefaultmodelconstantsPossibletoover ridewithuser sownsub model usingCEL Bothmaybedoneonaper domainorper wallbasis OthermodelstypicallyappliedforvariablesoutsidetheRPImodelitselfBubblediameterinthebulk usuallyassumedasafunctionoflocalliquidsubcooling Includednon dragforces WallHeatPartitioning IterativeSolution HeatFluxPartitiondetermineswallheatfluxasacomplexnon linearfunctionofwallsuperheatSpecifiedWallTemperature UsespecifiedTwalltodetermineindividualwallheatfluxesSpecifiedHeatFlux ComputeTwallfromQspecusingnon linearequationsolutionalgorithmUsecomputedTwalltodetermineindividualwallheatfluxesSpecifiedHeatTransferCoefficient SameasforSpecifedHeatFlux CHTWallSameasforSpecifedTemperature usinglaggedinterfacialtemperature WallBoilingSetupProcedure DomainLevel IfwallboilingisrequireditmustbedefinedfirstatthedomainlevelOptionalSub ModelofThermalPhaseChangeMassTransferDefaultsub modelsareassumedunlessalteredbytheuser WallBoilingSetupProcedure WallBoundaries Wallboilingmustbeswitchedonexplicitlyoneachwallwhereisexpectedtooccur DefinedunderFluidPairobjectsunderboundarydetailsOptionnotavailableiffluiddependentheattransferBCsarerequestedN B DifferenttoCFX 11customisedimplementation wherewallboilingtookplaceonallwalls Wallboilingwillnotoccurifyouforgettodothis User definedSub models Sub modeldefaultsmaybeoverriddenonthedomainortheboundarylevelMaychangemodelconstantsMayproveduser definedsub modelsviaCELDomainlevelmodificationsapplyonallwallswherewallboilingisdefined unlessoverriddenlocallyBoundarylevelmodificationsonlyapplylocallytothespecificwall CurrentWallBoilingModelLimitations Sub CooledNucleateBoilingModelNotapplicabletoFilmBoilingorCriticalHeatFlux CHF regimes TurbulentFlowAllturbulencemodelssupportedinprincipal Laminarflownotsupported Robustnessproblemsobservedforfinenear wallmeshesusingAutomaticwallfunctions Mono DispersedBubblyFlowWallboiling MUSIGnotsupported OtherRestrictionsWallboiling radiationnotsupported WallheattransferBC smustbedefinedperwall notperfluid WallBoilingValidation ValidationTestCaseSubcooledBoilinginPipewithHeatedWallBartolomejetal 1967 1982 ConxitaLifante 2008 largenumberofexperimentaltestcaseconditionswithdatasteam waterpipeflowwithwallboilingliquidsub coolingdefinedtohavesteaminceptionalwaysatthesamewallheightDifferentconfigurationswerestudiedinthepaper Mainparameters MassinflowratePressureWallheatfluxPipediameter BartolomejTestCase Description 2Daxialsymmetry steadysimulation1degreeextrusionSpecifiedheatfluxatthewallSymmetryb c atplanesandaxisInletb c withgiveninletmassflowOutletb c withaveragestaticpressure BartolomejTestCase Models Steam Water2 phaseflow Water continuousphaseWaterSteam dispersebubblesLiquidtemperaturedependentbubblediameterEquation of state IAPWS IF97water watersteampropertiesInterfacialTransferGracedragFADTurbulentdispersionforceTomiyamaliftforceWalllubricationforce Antal Tomiyama none Tworesistanceheattransfermodel withRanzMarshallonthecontintinuousphasesideRPIwallboilingmodelwithdefaultsub modelsUserdefinedInterfacialareadensityaccountingforhighervolumefractionofthesteamphase BartolomejTestCase Conditions R 7 7mm Z 2m q 0 57MW m2 Gin 900kg sm2 NumericalGrids NumericalParameters Results Grid1 Axialdevelopmentofwatertemperatureandsteamvolumefraction Results Grid2 Axialdevelopmentofwatertemperatureandsteamvolumefraction Results Grid3 Axialdevelopmentofwatertemperatureandsteamvolumefraction ComparisontoDataandGridIndependence TotalGasContent EffectofParameter ModelVariation Wallheatfluxinfluence Walllubricationforcemodelinfluence ReactorSafety BoilinginRodBundle 3 3rodsymmetrysectionfromanuclearreactorfuelassemblywithguidevanesPeriodicBC satallsidesWallheatfluxofqwall 106W m2ReferencePressurep 15 7MPaWaterinlettemperatureTInlet 607K 12Kwatersubcooling ReactorSafety BoilinginRodBundle CFX 12 0 VapourVF 25 isosurfaces VaporVolumeFractioninChannels Cavitation VaporousandGaseousCavitation Vaporouscavitationoccurswhenthelocalpressurefallsbelowthevaporpressureofaliquid Thiscausingveryrapidboilingoftheliquidatcavitationnucleilocatedwithinthefluid Asthevaporbubblesmovetoregionswherethevaporpressureisexceeded theycollapseorcondense Thiscondensationcanbeaccompaniedbylocalhydraulicshocksandtheformationofhighvelocitymicrojets Thistypeofcavitationisresponsibleforthemechanicaldamagethatcanoccuronship spropellers Gaseouscavitationoccursforaliquidthatcontainsdissolvedgasessuchasoxygenornitrogen Whenthelocalpressurefallsbelowthesaturationpressureofthedissolvedgas itcancomeoutofsolutionasbubbles Gaseouscavitationisadiffusionprocessandismuchslowerthanvaporouscavitation Gaseouscavitationisresponsibleforthebends ortheformationofnitrogenbubblesinthebloodofscubadiverswhoascendtooquickly WillCavitationOccur ThetendencyforaflowtocavitatecanbecharacterizedbytheCavitationNumberwhichexaminesthedifferencebetweentheinletpressureandthevaporpressurerelativetothedynamicpressurehead Ca AsCadecreases thetendencyforcavitationtooccurincreases p pV rU2 2 Cavitation Thermodynamics 1 2 Pressuredropintheliquid2 3 Vapourgeneration cavitation 3 2 Pressureincreasebecauseofvolumeincreasefollowedbycondensation3 Intermediatestatebecauseofnon equilibriumeffects h P Pv 1 2 3 3 VaporousCavitation CFD ImportantcavitationeffectstomodelinCFDModificationofthepressurefieldAbsolutepressurereductionduetoBernoullivelocity pressureeffectsshouldbeboundedbytheliquidvaporpressure effectoncomputeddrag lift etc Presenceofvaporintheflowdomainandthelocationswhereit sformedCangiveguidanceintopossibility liklihoodofdamagetosurfacesbycavitationCavitationeffectscurrentlyoutsidethescopeofCFDActualmodellingofbubblecollapseandthepressurepulseandmicrojetformationthatresultsDirectsimulationofthedamagetosurfacesresultingfromcavitationbubblecollapse InterfacialMassTransfer Interfacialarea unitvolume interfacialareadensityObtainfromAssumptiononflowmorphology spheres Modeltransportequation Masstransferrateperunitarea Interfacialarea unitvolume VapourMassGenerationRate Sphericalbubbles Rayleigh PlessetEquation Linearbubblegrowthrate neglect2ndorderterm Mechanicalforcebalance Rapidprocess thermaleffectsneglectedviscous surfacetensioneffectsneglected InterfacialAreaDensity SphericalbubblespresentatvolumefractionaV VaporizationandCondensationRates Availabilityofnucleationsitesdecreaseasvaporvolumefractionincreases neighborsitescouldbeabsorbedbyasinglebubble Amodifiedinterfacialareadensityisappliedforvaporization Empiricalcalibrationcoefficients Fvap 50 andFcon 0 01 Nucleationsitedensity nuc 5 10 4 andRadiusRB 10 6m CavitationExamples CavitationatHydrofoil 1 angleofattackCavitationatmidchordCavitationNumbers 0 34 0 43 Ca 0 34 Cavitation Hydrofoil 4 angleofattackCavitationatleadingedgeCavitationNumbers 0 84 1 0 Ca 0 84 CavitationExample PumpInducer Geometryanddata LEMFI ENSAM ParisBakiretal 2004

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论