



免费预览已结束,剩余1页可下载查看
下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
第七章 解三角形一、基础知识在本章中约定用a,b,c分别表示abc的三个内角,a, b, c分别表示它们所对的各边长,为半周长。1正弦定理:=2r(r为abc外接圆半径)。推论1:abc的面积为sabc=推论2:在abc中,有bcosc+ccosb=a.推论3:在abc中,a+b=,解a满足,则a=a.正弦定理可以在外接圆中由定义证明得到,这里不再给出,下证推论。先证推论1,由正弦函数定义,bc边上的高为bsinc,所以sabc=;再证推论2,因为b+c=-a,所以sin(b+c)=sina,即sinbcosc+cosbsinc=sina,两边同乘以2r得bcosc+ccosb=a;再证推论3,由正弦定理,所以,即sinasin(-a)=sin(-a)sina,等价于cos(-a+a)-cos(-a-a)= cos(-a+a)-cos(-a-a),等价于cos(-a+a)=cos(-a+a),因为0-a+a,-a+a. 所以只有-a+a=-a+a,所以a=a,得证。2余弦定理:a2=b2+c2-2bccosa,下面用余弦定理证明几个常用的结论。(1)斯特瓦特定理:在abc中,d是bc边上任意一点,bd=p,dc=q,则ad2= (1)【证明】 因为c2=ab2=ad2+bd2-2adbdcos,所以c2=ad2+p2-2adpcos 同理b2=ad2+q2-2adqcos, 因为adb+adc=,所以cosadb+cosadc=0,所以q+p得qc2+pb2=(p+q)ad2+pq(p+q),即ad2=注:在(1)式中,若p=q,则为中线长公式(2)海伦公式:因为b2c2sin2a=b2c2 (1-cos2a)= b2c2 (b+c)-a2a2-(b-c) 2=p(p-a)(p-b)(p-c).这里所以sabc=二、方法与例题1面积法。例1 (共线关系的张角公式)如图所示,从o点发出的三条射线满足,另外op,oq,or的长分别为u, w, v,这里,+(0, ),则p,q,r的共线的充要条件是2正弦定理的应用。例2 abc内有一点p,使得bpc-bac=cpa-cba=apb-acb。求证:apbc=bpca=cpab。例3 abc的各边分别与两圆o1,o2相切,直线gf与de交于p,求证:pabc。3一个常用的代换:在abc中,记点a,b,c到内切圆的切线长分别为x, y, z,则a=y+z, b=z+x, c=x+y.例4 在abc中,求证:a2(b+c-a)+b2(c+a-b)+c2(a+b-c) 3abc.4三角换元。例5 设a, b, cr+,且abc+a+c=b,试求的最大值。例6 在abc中,若a+b+c=1,求证: a2+b2+c2+4abcb”是“sinasinb”的_条件.6在abc中,sina+cosa0, tana-sina1,则abc为_角三角形.11三角形有一个角是600,夹这个角的两边之比是8:5,内切圆的面积是12,求这个三角形的面积。12已知锐角abc的外心为d,过a,b,d三点作圆,分别与ac,bc相交于m,n两点。求证:mnc的外接圆半径等于abd的外接圆半径。13已知abc中,sinc=,试判断其形状。四、高考水平训练题1在abc中,若tana=, tanb=,且最长边长为1,则最短边长为_.2已知nn+,则以3,5,n为三边长的钝角三角形有_个.3已知p, qr+, p+q=1,比较大小:psin2a+qsin2b_pqsin2c.4在abc中,若sin2a+sin2b+sin2c=4sinasinbsinc,则abc 为_角三角形.5若a为abc 的内角,比较大小:_3.6若abc满足acosa=bcosb,则abc的形状为_.7满足a=600,a=, b=4的三角形有_个.8设为三角形最小内角,且acos2+sin2-cos2-asin2=a+1,则a的取值范围是_.9a,b,c是一段笔直公路上的三点,分别在塔d的西南方向,正西方向,西偏北300方向,且ab=bc=1km,求塔与公路ac段的最近距离。10求方程的实数解。11求证:五、联赛一试水平训练题1在abc中,b2=ac,则sinb+cosb的取值范围是_.2在abc中,若,则abc 的形状为_.3对任意的abc,-(cota+cotb+cotc),则t的最大值为_.4在abc中,的最大值为_.5平面上有四个点a,b,c,d,其中a,b为定点,|ab|=,c,d为动点,且|ad|=|dc|=|bc|=1。记sabd=s,sbcd=t,则s2+t2的取值范围是_.6在abc中,ac=bc,o为abc的一点,abo=300,则aco=_.7在abc中,abc,则乘积的最大值为_,最小值为_.8在abc中,若c-a等于ac边上的高h,则=_.9如图所示,m,n分别是abc外接圆的弧,ac中点,p为bc上的动点,pm交ab于q,pn交ac于r,abc的内心为i,求证:q,i,r三点共线。10如图所示,p,q,r分别是abc的边bc,ca,ab上一点,且aq+ar=br+bp=cq+cp。求证:ab+bc+ca2(pq+qr+rp)。11在abc外作三个等腰三角形bfc,adc,aeb,使bf=fc,cd=da,ae=eb,adc=2bac,aeb=2abc,bfc=2acb,并且af,bd,ce交于一点,试判断abc的形状。六、联赛二试水平训练题1已知等腰abc,ab=ac,一半圆以bc的中点为圆心,且与两腰ab和ac分别相切于点d和g,ef与半圆相切,交ab于点e,交ac于点f,过e作ab的垂线,过f作ac的垂线,两垂线相交于p,作pqbc,q为垂足。求证:,此处=b。2设四边形abcd的对角线交于点o,点m和n分别是ad和bc的中点,点h1,h2(不重合)分别是aob与cod的垂心,求证:h1h2mn。3已知abc,其中bc上有一点m,且abm与acm的内切圆大小相等,求证:,此处(a+b+c), a, b, c分别为abc对应三边之长。4已知凸五边形abcde,其中abc=aed=900,bac=ead,bd与ce交于点o,求证:aobe。5已知等腰梯形abcd,g是对角线bd与ac的交点,过点g作ef与上、下底平行,点e和f分别在ab和cd上,求证:afb=900的充要条件是ad+bc=cd。6ap,aq,ar,as是同一个圆中的四条弦,已知paq=qar=ras,求证:ar(ap+ar)=aq(aq+as)。7已知一凸四边形的边长依次为a, b, c, d,外接圆半径为r,如果a2+b2+c2+d2=8r2,试问对此四边形有何要求?8设四边形abcd内接于圆,ba和cd延
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025至2030年中国心电图教学软件市场现状分析及前景预测报告
- 仓库物流现场环境保护管理措施
- 2025至2030年中国微电脑控制燃气灶市场现状分析及前景预测报告
- 2025版钢材绿色生产技术引进合同
- 二零二五年度石材施工合同范本大全全案解析
- 2025版儿童抚养权及家庭教育责任分担协议书
- 二零二五年度租赁商铺转租合同模板(含租赁期限)
- 二零二五年度沉井施工质量控制及验收合同
- 二零二五年度能源工程劳务分包合同管理规范
- 2025年度新型钢构劳务分包合同范本
- 《离骚》拼音及注释
- 宝钢设备大修管理办法
- 成人阻塞性睡眠呼吸暂停多学科诊疗指南主要内容
- Q-CSG1211016-2025 光伏发电站接入电网技术规范
- 社保费培训课件税务局
- 《ISO 37001-2025 反贿赂管理体系要求及使用指南》专业深度解读和应用培训指导材料之1:2范围+3术语和定义(雷泽佳编制-2025A1)
- 音乐节与音乐会策划项目可行性分析报告
- GB 7718-2025食品安全国家标准预包装食品标签通则
- GB/T 2039-2024金属材料单轴拉伸蠕变试验方法
- FZ/T 50004-2011涤纶短纤维干热收缩率试验方法
- 中医药法-课件
评论
0/150
提交评论