




已阅读5页,还剩37页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
单元复习课第三章概率 类型一 随机事件的频率与概率 典例1 某射击运动员为2016年奥运会做准备 在相同条件下进行射击训练 结果如下 1 该射击运动员射击一次 击中靶心的概率大约是多少 2 假设该射击运动员射击了300次 则击中靶心的次数大约是多少 3 假如该射击运动员射击了300次 前270次都击中靶心 那么后30次一定都击不中靶心吗 4 假如该射击运动员射击了10次 前9次中有8次击中靶心 那么第10次一定击中靶心吗 解析 1 由题意 击中靶心的频率与0 9接近 故概率约为0 9 2 击中靶心的次数大约为300 0 9 270 次 3 由概率的意义 可知概率是个常数 不因试验次数的变化而变化 后30次中 每次击中靶心的概率仍是0 9 所以不一定不击中靶心 4 不一定 因为每一次射击都是随机的 可能击中也可能击不中 规律总结 用频率估算概率的方法 1 进行大量的随机试验 求得频数 2 由频率计算公式fn a 得频率 3 由频率与概率的关系估计概率 巩固训练 下表是某灯泡厂对一批灯泡质量检测的情况 请填写合格品频率表 并观察频率表 估计灯泡合格品的概率是 解析 由表中数据易得 这6次检测灯泡试验中 出现合格品的频率依次是0 98 0 97 0 985 0 984 0 981 0 982 观察这些频率值 可以发现随着所抽查灯泡数的不断增加 频率值在0 98附近摆动 由概率的统计定义可得 灯泡合格品 的概率约为0 98 答案 0 980 970 9850 9840 9810 9820 98 类型二 互斥事件与对立事件及概率计算 典例2 1 抽查10件产品 设事件a为 至少有2件次品 则事件a的对立事件为 a 至多有2件次品b 至多有1件次品c 至多有2件正品d 至少有2件正品 2 甲 乙两人参加普法知识竞赛 共有5个不同题目 选择题3个 判断题2个 甲 乙两人各抽一题 甲 乙两人中有一个抽到选择题 另一个抽到判断题的概率是多少 甲 乙两人中至少有一人抽到选择题的概率是多少 解析 1 选b 至少有n个 的反面是 至多有n 1个 又因为事件a为 至少有2件次品 所以事件a的对立事件为 至多有1件次品 2 把3个选择题记为x1 x2 x3 2个判断题记为p1 p2 甲抽到选择题 乙抽到判断题 的情况有 x1 p1 x1 p2 x2 p1 x2 p2 x3 p1 x3 p2 共6种 甲抽到判断题 乙抽到选择题 的情况有 p1 x1 p1 x2 p1 x3 p2 x1 p2 x2 p2 x3 共6种 甲 乙都抽到选择题 的情况有 x1 x2 x1 x3 x2 x1 x2 x3 x3 x1 x3 x2 共6种 甲 乙都抽到判断题 的情况有 p1 p2 p2 p1 共2种 甲抽到选择题 乙抽到判断题 的概率为 甲抽到判断题 乙抽到选择题 的概率为故 甲 乙两人中有一个抽到选择题 另一个抽到判断题 的概率为 甲 乙两人都抽到判断题 的概率为故 甲 乙两人至少有一人抽到选择题 的概率为 规律总结 1 互斥或对立事件的判断方法 1 根据定义判断 互斥事件和对立事件都是针对两个事件而言的 在一次试验中 两个互斥事件不可能同时发生 强调的 不同时发生 即两个事件互相排斥 有可能都不发生 也可能只有一个发生 对立事件 必定而且只有一个发生 没有第三种可能 2 根据二者关系判断 两个事件互斥未必对立 两个事件对立一定互斥 2 互斥事件概率的求法 1 判 判断各事件是否互斥 2 拆 会把一个事件分拆为几个互斥事件 做到不重不漏 3 求 先分别求出每个事件的概率 再根据互斥事件的概率加法公式求得最后的结果 3 对立事件概率的求法 1 当某事件a所包含的基本事件较多 而它的对立事件所包含的情形 基本事件 较少时 利用p a 1 p 计算事件a的概率比较简单 2 有 至多 或 至少 要求的概率题 多数应用公式p a 1 p 进行计算 巩固训练 同时抛掷两枚骰子 既不出现5点也不出现6点的概率为 则5点或6点至少出现一个的概率是 解析 记既没有5点也没有6点的事件为a 则p a 5点或6点至少出现一个的事件为b 因为a b a b为必然事件 所以a与b是对立事件 则p b 1 p a 1 故5点或6点至少出现一个的概率为 答案 类型三 古典概型 典例3 现有8名某运动会志愿者 其中志愿者a1 a2 a3通晓日语 b1 b2 b3通晓俄语 c1 c2通晓韩语 从中选出通晓日语 俄语和韩语的志愿者各1名 组成一个小组 1 求a1被选中的概率 2 求b1和c1不全被选中的概率 解析 1 从8人中选出日语 俄语和韩语的志愿者各1名 其一切可能的结果组成的基本事件空间 a1 b1 c1 a1 b1 c2 a1 b2 c1 a1 b2 c2 a1 b3 c1 a1 b3 c2 a2 b1 c1 a2 b1 c2 a2 b2 c1 a2 b2 c2 a2 b3 c1 a2 b3 c2 a3 b1 c1 a3 b1 c2 a3 b2 c1 a3 b2 c2 a3 b3 c1 a3 b3 c2 即 由18个基本事件组成 由于每一个基本事件被抽取的机会均等 因此这些基本事件的发生是等可能的 用m表示 a1被选中 这一事件 则m a1 b1 c1 a1 b1 c2 a1 b2 c1 a1 b2 c2 a1 b3 c1 a1 b3 c2 即事件m由6个基本事件组成 故p m 2 用n表示 b1和c1不全被选中 这一事件 则其对立事件表示 b1和c1全被选中 这一事件 因为 a1 b1 c1 a2 b1 c1 a3 b1 c1 即事件由3个基本事件组成 所以p 由对立事件的概率公式得p n 1 p 规律总结 1 古典概型概率计算的关键及注意点 1 关键 分清基本事件的总数n与事件a包含的基本事件的个数m 再利用公式p a 求出概率 2 注意点 用列举法把基本事件一一列举出来 在列举时必须按某一顺序 做到不重不漏 2 古典概型综合应用的解法古典概型问题经常与统计的简单知识综合命题 如与分层抽样 样本平均数 方差等知识综合命题 解答该类问题的关键是用列举法计算随机事件所包含的基本事件数 巩固训练 2016 长沙高一检测 袋中有6个球 其中4个白球 2个红球 从袋中任意取出两个球 求下列事件的概率 1 a 取出的两球都是白球 2 b 取出的两球1个是白球 另1个是红球 3 c 取出的两球中至少有一个白球 解析 设4个白球的编号为1 2 3 4 2个红球的编号为5 6 从袋中的6个小球中任取2个球的取法有 1 2 1 3 1 4 1 5 1 6 2 3 2 4 2 5 2 6 3 4 3 5 3 6 4 5 4 6 5 6 共15种 1 从袋中的6个球中任取两个 所取的两球全是白球的取法总数 即是从4个白球中任取两个的取法总数 共有6种 为 1 2 1 3 1 4 2 3 2 4 3 4 所以取出的两个球全是白球的概率为p a 2 从袋中的6个球中任取两个 其中一个是红球 而另一个是白球 其取法包括 1 5 1 6 2 5 2 6 3 5 3 6 4 5 4 6 共8种 所以取出的两个球一个是白球 一个是红球的概率为p b 3 方法一 因为c a b且a b为互斥事件 所以p c p a p b 方法二 设c的对立事件为d 取出的两球中没有白球 全为红球 而d含有1个基本事件 5 6 所以p c 1 p d 类型四 几何概型及其综合应用 典例4 1 2016 全国卷 某公司的班车在7 30 8 00 8 30发车 小明在7 50至8 30之间到达发车站乘坐班车 且到达发车站的时刻是随机的 则他等车时间不超过10分钟的概率是 2 在半径为1的圆周上任取两点 连成一条弦 其长超过该圆内接正三角形边长的概率是多少 解析 1 选b 如图所示 画出时间轴 小明到达的时间会随机地落在图中线段ab中 而当他到达时间落在线段ac或db时 才能保证他等车的时间不超过10分钟 根据几何概型 所求概率p 2 设事件m 弦长超过 固定一点a于圆周上 以此点为顶点作内接正三角形abc 显然只有当弦的另一端点d落在上时 才有 ad bc 由几何概率公式知p m 规律总结 求解几何概型的关注点 1 验证两个基本特征 每次
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 机电设备安装电气系统接线方案
- 水稻病害课件
- 机电设备安装智能控制系统方案
- 影视片段赏析王璐2022年10月15课件
- 窒息的急救处理96课件
- 2025版城市更新项目房屋联建合作协议
- 二零二五年度污水处理厂清包工程合同范本
- 2025版养老院地砖墙砖铺设劳务分包合同
- 2025版电商平台独家运营权转让合同书
- 二零二五年度企业宿舍宿管员劳动合同规范范本
- 闭店协议如何签订合同模板
- 2025医疗机构租赁合同模板
- 2025年肇庆社区专职工作人员招聘真题
- 兄妹房屋协议书
- 微量泵输液泵使用技术
- epg信息管理制度
- 产品开发项目管理制度
- 液氧站安全管理制度
- 2025至2030年中国汽车空调过滤器行业市场现状分析及前景战略研判报告
- 【课件】《合并同类项》说课课件++2024-2025学年人教版数学七年级上册
- 2021年12月大学英语四级考试真题及答案(第1套)
评论
0/150
提交评论