




已阅读5页,还剩1页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
第2课时函数的最大(小)值课时目标1.理解函数的最大(小)值的概念及其几何意义.2.体会函数的最大(小)值与单调性之间的关系.3.会求一些简单函数的最大(小)值1函数的最大值、最小值最值最大值最小值条件设函数yf(x)的定义域为I,如果存在实数M满足:(1)对于任意的xI,都有_(2)存在x0I,使得_.(3)对于任意的xI,都有_(4)存在x0I,使得_结论M是函数yf(x)的最大值M是函数yf(x)的最小值2.函数最值与单调性的联系(1)若函数yf(x)在区间a,b上单调递增,则f(x)的最大值为_,最小值为_(2)若函数yf(x)在区间a,b上单调递减,则f(x)的最大值为_,最小值为_一、选择题1若函数f(x)x22(a1)x2在区间(,4)上是减函数,则实数a的取值范围是()Aa3 Ba3Ca5 Da32函数yx()A有最小值,无最大值B有最大值,无最小值C有最小值,最大值2D无最大值,也无最小值3已知函数yx22x3在区间0,m上有最大值3,最小值2,则m的取值范围是()A1,) B0,2C(,2 D1,24如果函数f(x)x2bxc对任意的实数x,都有f(1x)f(x),那么()Af(2)f(0)f(2) Bf(0)f(2)f(2)Cf(2)f(0)f(2) Df(0)f(2)f(2)5函数y|x3|x1|的()A最小值是0,最大值是4B最小值是4,最大值是0C最小值是4,最大值是4D没有最大值也没有最小值6函数f(x)的最大值是()A. B.C. D.题号123456答案二、填空题7函数y的值域是_8函数yx26x9在区间a,b(ab2xm恒成立,求实数m的取值范围能力提升12已知函数f(x)32|x|,g(x)x22x,构造函数F(x),定义如下:当f(x)g(x)时,F(x)g(x);当f(x)g(x)时,F(x)f(x),那么F(x)()A有最大值3,最小值1B有最大值3,无最小值C有最大值72,无最小值D无最大值,也无最小值13已知函数f(x)ax2|x|2a1,其中a0,aR.(1)若a1,作函数f(x)的图象;(2)设f(x)在区间1,2上的最小值为g(a),求g(a)的表达式1函数的最大(小)值(1)定义中M首先是一个函数值,它是值域中的一个元素,如函数f(x)x2(xR)的最大值为0,有f(0)0,注意对“存在”的理解(2)对于定义域内任意元素,都有f(x)M或f(x)M成立,“任意”是说对每一个值都必须满足不等式拓展对于函数yf(x)的最值,可简记如下:最大值:ymax或f(x)max;最小值:ymin或f(x)min.2函数的最值与值域、单调性之间的联系(1)对一个函数来说,其值域是确定的,但它不一定有最值,如函数y.如果有最值,则最值一定是值域中的一个元素(2)若函数f(x)在闭区间a,b上单调,则f(x)的最值必在区间端点处取得即最大值是f(a)或f(b),最小值是f(b)或f(a)3二次函数在闭区间上的最值探求二次函数在给定区间上的最值问题,一般要先作出yf(x)的草图,然后根据图象的增减性进行研究特别要注意二次函数的对称轴与所给区间的位置关系,它是求解二次函数在已知区间上最值问题的主要依据,并且最大(小)值不一定在顶点处取得第2课时函数的最大(小)值知识梳理1(1)f(x)M(2)f(x0)M(3)f(x)M(4)f(x0)M2(1)f(b)f(a)(2)f(a)f(b)作业设计1A由二次函数的性质,可知4(a1),解得a3.2Ayx在定义域,)上是增函数,yf(),即函数最小值为,无最大值,选A.3D由yx22x3(x1)22知,当x1时,y的最小值为2,当y3时,x22x33,解得x0或x2.由yx22x3的图象知,当m1,2时,能保证y的最大值为3,最小值为2.4D依题意,由f(1x)f(x)知,二次函数的对称轴为x,因为f(x)x2bxc开口向上,且f(0)f(1),f(2)f(3),由函数f(x)的图象可知,)为f(x)的增区间,所以f(1)f(2)f(3),即f(0)f(2)f(2)5Cy|x3|x1|.因为1,3)是函数y2x2的减区间,所以40,当|x|取最小值时,y有最大值,所以当x0时,y的最大值为2,即0y2,故函数y的值域为(0,2820解析y(x3)218,ab2xm在1,1上恒成立,即x23x1m0在1,1上恒成立令g(x)x23x1m(x)2m,其对称轴为x,g(x)在区间1,1上是减函数,g(x)ming(1)131m0,m0,则f(x)a(x)22a1,f(x)图象的对称轴是直线x.当0时,f(x)在区间
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 行政英语面试题目及答案
- 无损探伤工培训知识内容课件
- 2025年网络安全攻防实战模拟题集及备考策略
- 2025年电子商务运营师能力评估模拟题集
- 2025年心理咨询师考试全真模拟试题及解析
- 2025年医卫类放射医学(中级)专业知识-基础知识参考题库含答案解析(5套)
- 2025年医卫类护士资格证参考题库含答案解析(5套)
- 新闻采访面试题目及答案
- 2025年村级红白理事会厨师招聘面试模拟题与解析
- 二零二五年港口岸线安全监控设备供应合同
- AI赋能高校美术理论课程教学与改革初探
- 2025年四川雅安市川藏工业园区发展有限责任公司招聘笔试参考题库附带答案详解
- 图书管理员职业规划
- 2024年《宪法》知识竞赛必背100题题库带解析含必背答案
- 某冷链运营体系方案
- 企业经销商管理完全手册
- 国有资产资产委托管理协议书范本
- 《品牌培训知识》课件
- 《机械制图》职业院校机械类专业全套教学课件
- 充电桩巡查记录表
- 《证券投资学》全套教学课件
评论
0/150
提交评论