高中数学 第三章 函数的应用 3.2.2 函数模型的应用实例课件 新人教A版必修1(1).ppt_第1页
高中数学 第三章 函数的应用 3.2.2 函数模型的应用实例课件 新人教A版必修1(1).ppt_第2页
高中数学 第三章 函数的应用 3.2.2 函数模型的应用实例课件 新人教A版必修1(1).ppt_第3页
高中数学 第三章 函数的应用 3.2.2 函数模型的应用实例课件 新人教A版必修1(1).ppt_第4页
高中数学 第三章 函数的应用 3.2.2 函数模型的应用实例课件 新人教A版必修1(1).ppt_第5页
已阅读5页,还剩28页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

3 2 2函数模型的应用实例 第三章 3 2函数模型及其应用 学习目标1 能利用已知函数模型求解实际问题 2 能自建确定性函数模型解决实际问题 3 了解建立拟合函数模型的步骤 并了解检验和调整的必要性 题型探究 问题导学 内容索引 当堂训练 问题导学 思考 知识点一几类已知函数模型 指数型函数与指数函数在解析式上有什么不同 答案 答案指数函数y ax a 0 a 1 的系数为1 且没有常数项 确定一个指数函数解析式只需要一个条件 指数型函数模型f x bax c a b c为常数 b 0 a 0且a 1 指数式前的系数不一定是1 而且可能还有常数项 所以确定指数型函数通常需要3个条件 几类函数模型 梳理 思考 知识点二自建函数模型 数据拟合时 得到的函数为什么要检验 答案 答案因为限于我们的认识水平和一些未知因素的影响 现实可能与我们所估计的函数有误差或甚至不切合客观实际 此时就要检验 调整模型或改选其他函数模型 梳理 面临实际问题 建立函数模型的步骤 1 收集数据 2 画散点图 3 选择函数模型 4 求函数模型 5 检验 6 用函数模型解释实际问题 题型探究 例1某列火车从北京西站开往石家庄 全程277km 火车出发10min开出13km后 以120km h的速度匀速行驶 试写出火车行驶的总路程s与匀速行驶的时间t之间的关系 并求火车离开北京2h内行驶的路程 解答 类型一利用已知函数模型求解实际问题 因为火车匀速行驶th所行驶的路程为120t 在实际问题中 有很多问题的两变量之间的关系是已知函数模型 这时可借助待定系数法求出函数解析式 再根据解题需要研究函数性质 反思与感悟 跟踪训练1如图是抛物线形拱桥 当水面在l时 拱顶离水面2米 水面宽4米 则水位下降1米后 水面宽 米 答案 解析 解析以拱顶为原点 过原点与水面平行的直线为x轴 建立平面直角坐标系 如图 则水面和拱桥交点a 2 2 设抛物线所对应的函数关系式为y ax2 a 0 命题角度1非分段函数模型例2某化工厂引进一条先进生产线生产某种化工产品 其生产的总成本y 万元 与年产量x 吨 之间的函数关系式可以近似地表示为y 48x 8000 已知此生产线年产量最大为210吨 若每吨产品平均出厂价为40万元 那么当年产量为多少吨时 可以获得最大利润 最大利润是多少 类型二自建确定性函数模型解决实际问题 解答 解设可获得总利润为r x 万元 r x 在 0 210 上是增函数 x 210时 年产量为210吨时 可获得最大利润1660万元 自建模型时主要抓住四个关键 求什么 设什么 列什么 限制什么 求什么就是弄清楚要解决什么问题 完成什么任务 设什么就是弄清楚这个问题有哪些因素 谁是核心因素 通常设核心因素为自变量 列什么就是把问题已知条件用所设变量表示出来 可以是方程 函数 不等式等 限制什么主要是指自变量所应满足的限制条件 在实际问题中 除了要使函数式有意义外 还要考虑变量的实际含义 如人不能是半个等 反思与感悟 解答 由此可知 为获得最大利润 对甲 乙两种商品的资金投入分别为0 75万元和2 25万元 共获得利润1 05万元 解设对甲种商品投资x万元 则对乙种商品投资 3 x 万元 总利润为y万元 命题角度2分段函数模型例3某旅游点有50辆自行车供游客租赁使用 管理这些自行车的费用是每日115元 根据经验 若每辆自行车的日租金不超过6元 则自行车可以全部租出 若超过6元 则每提高1元 租不出去的自行车就增加3辆 旅游点规定 每辆自行车的日租金不低于3元并且不超过20元 每辆自行车的日租金x元只取整数 用y表示出租所有自行车的日净收入 日净收入即一日中出租的所有自行车的总收入减去管理费用后的所得 1 求函数y f x 的解析式 解答 解当x 6时 y 50 x 115 令50 x 115 0 解得x 2 3 又因为x n 所以3 x 6 且x n 当6 x 20 且x n时 y 50 3 x 6 x 115 3x2 68x 115 综上可知 所以当x 11时 ymax 270元 综上所述 当每辆自行车日租金定为11元时才能使日净收入最多 为270元 2 试问日净收入最多时每辆自行车的日租金应定为多少元 日净收入最多为多少元 解答 解当3 x 6 且x n时 因为y 50 x 115是增函数 所以当x 6时 ymax 185元 当6 x 20 且x n时 自变量x按取值不同 依不同的对应关系对应因变量y是分段函数的典例特征 建立分段函数模型应注意 1 分段函数的 段 一定要分得合理 不重不漏 2 分段函数的定义域为对应每一段自变量取值范围的并集 3 分段函数的值域求法为 逐段求函数值的范围 最后比较再下结论 反思与感悟 跟踪训练3学校某研究性学习小组在对学生上课注意力集中情况的调查研究中 发现其在40min的一节课中 注意力指数y与听课时间x 单位 min 之间的关系满足如图的图象 当x 0 12 时 图象是二次函数图象的一部分 其中顶点a 10 80 过点b 12 78 当x 12 40 时 图象是线段bc 其中c 40 50 根据专家研究 当注意力指数大于62时 学习效果最佳 1 试求y f x 的函数关系式 解答 当x 12 40 时 设f x kx b k 0 因为线段bc过点b 12 78 c 40 50 将它们的坐标分别代入上式 解当x 0 12 时 设f x a x 10 2 80 a 0 所以f x x 90 解得4 x 12或12 x 28 即4 x 28 故老师应在x 4 28 时段内安排核心内容 能使得学生学习效果最佳 2 教师在什么时段内安排核心内容 能使得学生学习效果最佳 请说明理由 解答 当堂训练 1 从2013年起 在20年内某海滨城市力争使全市工农业生产总产值翻两番 如果每年的增长率是8 则达到翻两番目标的最少年数为a 17b 18c 19d 20 答案 2 3 4 1 5 2 一辆汽车在某段路程中的行驶路程s关于时间t变化的图象如图所示 那么图象所对应的函数模型是a 分段函数b 二次函数c 指数函数d 对数函数 答案 2 3 4 1 5 3 若镭经过100年后剩留原来质量的95 76 设质量为1的镭经过x年后剩留量为y 则x y的函数关系是 答案 2 3 4 1 5 4 某种植物生长发育的数量y与时间x的关系如下表 则下面的函数关系式中 拟合效果最好的是a y 2x 1b y x2 1c y 2x 1d y 1 5x2 2 5x 2 答案 2 3 1 4 5 5 某同学最近5年内的学习费用y 千元 与时间x 年 的关系如图所示 则可选择的模拟函数模型是a y ax bb y ax2 bx cc y aex bd y alnx b 答案 2 3 4 1

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论