




全文预览已结束
下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
第5章 反比例函数一、教材分析: 函数是在探索具体问题中数量关系和变化规律的基础上抽象出来的数学概念,是研究现实世界变化规律的重要内容和数学模型,学生曾在七年级下册和八年级上册学习过“变量之间的关系”和“一次函数”等内容,对函数已有了初步的认识,在此基础上讨论反比例函数可以进一步领悟函数的概念并积累研究函数性质的方法及用函数观点处理实际问题的经验,为后继学习二次函数等产生积极的影响。本节课通过对具体情境的分析,概括出反比例函数的表达形式,明确反比例函数的概念。通过例题和列举的实例可以丰富对反比例函数的认识,理解反比例函数的意义。 学情分析: 1.已有的生活体验 2.对以前学过的函数、一次函数、正比例函数有关知识的初步理解。二、 教学目标: (一)知识与技能 1.结合具体情境体会反比例函数的意义。 2.能根据已知条件确定反比例函数表达式。 (二)过程与方法 1.从现实情境和已有的知识经验出发,讨论两个变量之间的相似关系,加深对函数概念的理解. 2.经历抽象反比例函数概念的过程,领会反比例函数的意义,理解反比例函数的概念. (三)情感态度与价值观 结合实例引导学生了解所讨论的函数的表达形式,形成反比例函数概念的具体形象,是从感性认识到理性认识的转化过程,发展学生的思维;同时体验数学活动与人类生活的密切联系及对人类历史发展的作用.3、 教学重点: 经历抽象反比例函数概念的过程,领会反比例函数的意义,理解它的概念. 4、 教学难点: 领会反比例函数的意义,理解反比例函数的概念.5、 教学方法: 教师引导学生,小组合作、探究式进行归纳. 1、通过关注日常生活中所涉及的两个变量之间的相依关系,加深对函数关系的理解。 2、通过具体问题,讨论总结反比例函数的概念。六、教具准备:多媒体课件 教学过程 七、教学过程:(1) 创设情境,引入新课 1、把一张一百元换成50元的人民币,可得几张?换成10元的人民币可得几张?依次换成5元,2元,1元的人民币,各可得几张?换得的张数y 与面值x之间有怎样的关系呢?请同学们填表: 换成的元数x(元) 50 20 10 5 2 1 换成的张数y(张) 提问: 1.你会用含有X的代数式表示Y吗? 2.当换成的元数X变化时,换成的张数Y会怎样变化呢?(从身边生活中体会数学,此情境源自生活。) 3.变量X是Y的函数吗?为什么? (回顾函数的相关知识) 还记得以往学习的函数吗?(回顾一次函数、正比例函数的表达式。) 与一次函数和正比例函数不同,我们今天要学习的函数是反比例函数。 (2) 互动探究,学习新课 例1.我们知道,电流I、电阻R、电压U之间满足关系式U=IR,当U=220V时,(1)请你用含有R的代数式表示I; (2)利用你写出的关系式完成下表: R/ 20 40 60 80 100 I/A 学生填表完成,提出当R越来越大时,I是怎样变化的?当R越来越小呢?( (3)变量I是R的函数吗?为什么? (体现数理学科知识的联系) 思考:舞台灯光为什么在很短的时间内将阳光灿烂的晴日变成浓云密布的阴天,或由黑夜变成白昼的?请大家互相交流后回答.(学以致用) 例3.京沪高速公路全长约为1262km,汽车沿京沪高速公路从上海驶往北京,汽车完成全程所需的时间t(h)与行驶的平均速度V(km/h)之间有怎样的关系?变量t是v的函数吗?为什么?(常见的行程问题中蕴含的函数关系) (3) 学生分组交流讨论 我们再看例子: 两个变量x和y的乘积等于-6,用函数关系式表示出来是 ,思考:变量x和y之间的关系是什么? 提出问题:变量之间的关系具有什么特点?引导学生得出:两个变量的乘积等于非零常数如何给反比例函数下定义? 教师总结并和学生一起探索出反比例函数的概念: 一般地,如果两个变量x,y之间的关系可以表示成: (k为常数,K0)的形式,那么称y是x的反比例函数。 强调在理解概念时要注意:常数K0;自变量x不能为零(因为分母为0时,该式没意义);当 可写为 时注意x的指数为1。由定义不难看出,k可以从两个变量相对应的任意一对对应值的积来求得,只要k确定了,这个函数就确定了。 (4) 课堂练习:(巩固反比例函数的概念) 1:下列哪些式子表示y是x的反比例函数?为什么?并且说明K是多少? (1) (2) (3) (4) (5) (6) 2. 当m为何值时,函数 是反比例函数?(熟悉 形式) 3、若 是反比例函数,则m、n的取值是( ) A、 B、 C、 D、 4、下列命题中,y与x成反比例关系的是( ) A正方形的面积y与它的边长x B矩形的面积为定值a,则矩形的长y与宽x C三角形的面积y与底边长x D圆的面积y周长x 5. P144做一做1-3(实物展示:加深对反比例函数意义的理解) 6. 数学来源于生活,请同学在生活中找出类似的例子。(分组交流讨论,体会数学与生活的密切联系,并让学生树立模型化思想。) (5) 总结、提高。 今天通过生活中的例子,探索学习了反比例函数的概念,我们要掌握反比例函数是针对两种变化量,并且这两个变化的量可以写成 (k为常数,K0)同时要注意几点:常数K0;自变量x不能为零(因为分母为0时,该式没意义);当 可写为 时注意x的指数为1。由定义不难看出,k可以从两个变量相对应的任意一对对应值的积来求得,只要k确定了,这个函数就确定了。 (六)布置作业:P145-1461、2、4 (7) 板书设计: 反比例函数 1、定义:一般地,如果两个变量x,y之间的关系可以表示成: (k为常数
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 高端定制刺绣师个性化方案设计考试试卷及答案
- 农发行呼和浩特市武川县2025秋招数据分析师笔试题及答案
- 农发行乐山市峨眉山市2025秋招结构化面试经典题及参考答案
- 成都蒲江县中储粮2025秋招笔试行测高频题库及答案
- 国家能源鸡西市梨树区2025秋招笔试模拟题及答案
- 国家能源焦作市马村区2025秋招笔试数学运算题专练及答案
- 2025年陕西电力科隆发展有限责任公司招聘(1人)考前自测高频考点模拟试题及答案详解(各地真题)
- 出租协议书范文
- 协会成立申请书
- 中国移动普洱市2025秋招技术岗专业追问清单及参考回答
- 2025年中国零售用显示屏行业市场全景分析及前景机遇研判报告
- 吉林省长春市2024-2025学年七年级上学期生物月考试题(含答案)
- 2025至2030中国视觉点胶机市场运行状况与未来发展走势预测报告
- 心源性休克病人的护理
- 种草莓劳动课件
- 雀巢牛奶购销合同范本
- 2025-2026学年华中师大版(2024)小学体育与健康一年级(全一册)教学设计(附目录P123)
- GA/T 952-2011法庭科学机动车发动机号码和车架号码检验规程
- 吊洞停止点检查记录表
- 以友辅仁教案
- “20道游标卡尺题目及答案”
评论
0/150
提交评论