目录.doc

液压防爆提升机设计【6张CAD图纸+毕业论文】

收藏

压缩包内文档预览:
预览图 预览图 预览图 预览图 预览图
编号:422369    类型:共享资源    大小:1.28MB    格式:RAR    上传时间:2015-04-02 上传人:上*** IP属地:江苏
39
积分
关 键 词:
液压 防爆 提升机 设计 cad图纸 毕业论文 液压防爆提升机
资源描述:

液压防爆提升机设计

84页,42000字数+说明书+外文翻译+6张CAD图纸【详情如下】

主轴A1.dwg

制动器A2.dwg

外文翻译--21 世纪前半叶矿井提升机在深井中的应用.doc

总装图A0.dwg

控制阀组A2.dwg

液压系统图A1.dwg

液压防爆提升机设计说明书.doc

盘形闸A2.dwg

目录.doc

目录

1 绪论……………………………………………………………………………1

1.1液压防爆提升机概述……………………………………………………1

1.1.1引言……………………………………………………………………1

1.1.2液压防爆提升经济的用途、工作原理、类型…………………………1

1.2液压防爆提升机的方展历程……………………………………………3

1.2.1国外发展历程…………………………………………………………3

1.2.2国内发展历程…………………………………………………………4

1.3技术特点…………………………………………………………………5

1.4液压传动的优缺点………………………………………………………7

1.5液压系统设计方案的确定………………………………………………8

1.5.1概述……………………………………………………………………9

1.5.2方案确定………………………………………………………………9

2 钢丝绳的选择和卷筒尺寸的确定…………………………………………10

2.1钢丝绳的选择……………………………………………………………10

2.1.1钢丝绳的结构…………………………………………………………10

2.1.2钢丝绳的分类…………………………………………………………10

2.1.3钢丝绳的选择…………………………………………………………11

2.1.4钢丝绳在卷筒上的固定方式…………………………………………12

2.2卷筒尺寸的确定…………………………………………………………12

2.2.1卷筒结构………………………………………………………………12

2.2.2卷筒尺寸的确定………………………………………………………13

3 液压马达、主液压泵及其电机的选择………………………………………16

3.1液压马达…………………………………………………………………16

3.1.1概述……………………………………………………………………16

3.1.2液压防爆提升绞车常采用的几种液压马达…………………………16

3.2液压泵……………………………………………………………………22

3.2.1概述……………………………………………………………………22

3.2.2液压防爆提升绞车常采用的几种液压泵……………………………22

3.3液压马达、主液压泵及其电机的选择…………………………………30

4 主轴装置的设计……………………………………………………………32

4.1概述………………………………………………………………………32

4.2主轴装置的结构设计……………………………………………………32

4.3主轴装置的计算…………………………………………………………32

4.3.1变位质量计算…………………………………………………………32

4.3.2筒壳强度计算…………………………………………………………35

4.3.3主轴强度和刚度计算…………………………………………………35

4.3.4主轴承强度计算………………………………………………………50

5 制动装置的设计……………………………………………………………51

5.1概述………………………………………………………………………51

5.2制动装置的结构设计……………………………………………………52

5.3制动装置的设计计算……………………………………………………56

5.3.1盘形制动闸正压力计算………………………………………………56

5.3.2松闸时作用在活塞上的液压力计算…………………………………58

5.3.3盘形制动闸工作油压计算……………………………………………59

6 液压系统的设计……………………………………………………………59

6.1液压系统各液压回路的设计……………………………………………59

6.1.1引言……………………………………………………………………59

6.1.2各液压回路的设计……………………………………………………60

6.2液压阀组及油箱的设计…………………………………………………62

6.2.1液压阀组的设计………………………………………………………62

6.2.2油箱的设计……………………………………………………………64

7 液压提升机的安装与调试…………………………………………………65

7.1液压提升机的安装………………………………………………………65

7.1.1安装前的准备工作和设备运搬………………………………………65

7.1.2液压提升机的安装……………………………………………………66

7.2液压提升机的调试………………………………………………………69

8 液压提升机的运转、维护与检修……………………………………………71

8.1液压提升机的操作与运转………………………………………………71

8.2液压提升及的维护与检修………………………………………………73

结论……………………………………………………………………………77

参考文献………………………………………………………………………78

翻译部分

 英文原文……………………………………………………………………79

 中文译文……………………………………………………………………87

致谢……………………………………………………………………………94

摘  要

本设计首先对液压防爆提升机的用途、工作原理、类型及其发展历程进行了概述,通过对液压传动优缺点的分析以及与其它类型提升机进行比较确定了液压系统的设计方案。然后通过对其工作环境和技术特点的分析,并参考目前国内液压防爆提升机的结构,对液压防爆提升机的整体结构进行了设计,包括钢丝绳的选择、卷筒的设计、主轴装置的设计、制动装置的设计、液压系统的设计以及计算与校核。本设计由防爆电动机、低速大扭矩液压马达、轴向柱塞泵、双联叶片泵、多种控制阀、盘形制动器、卷筒、支承轴等部件组成。由于液压系统部分比较复杂,为了使提升机的结构紧凑,提高液压系统的性能和指标,将其主回路部分和其它部分分别组合在一起,构成主阀组和控制阀组。此液压提升机的特点是:采用液压传动、采用无级调速、结构紧凑、操纵简单、采用液压控制、制动安全可靠,其最大的优点是防爆功能。本液压提升机用于矿山、港口、码头等需要搬运物料的场所,尤其在煤矿井下等含有瓦斯或其它易燃易爆气体的场所广泛应用。

关键词:液压提升机; 设计; 计算; 阀组

Abstract

The first design of the hydraulic hoist the use of explosion-proof, principle, type and its development process was outlined by the advantages and disadvantages of hydraulic and other types of analysis and comparison determine elevator hydraulic systems design. Then through their work environment and the technical characteristics of the analysis, and refer to the current domestic hydraulic elevator explosion-proof structure of the hydraulic elevator explosion-proof structure of the overall design, including the choice of wire rope, roll the design, spindle Equipment design, the design of the braking system, hydraulic system design and calculation and verification. The design by the explosion-proof motor, a low-speed torque hydraulic motors, axial piston pump, double-blade pump, a variety of control valves, disc brakes, drum, the support shaft and other components。As part of the hydraulic system more complicated, in order to hoist the compact structure, improve the performance of the hydraulic system and indicators, its main circuit and other parts of the portfolio together, constitute the main valve block and control valve block. This hydraulic hoist features: The hydraulic transmission, a stepless speed regulation, compact and simple manipulation, the use of hydraulic control, brake safe and reliable, its biggest advantages is the explosion-proof function. The hydraulic hoist used for mining, ports, terminals and other necessary materials handling establishments, particularly in the coal mine gas, such as containing flammable and explosive gases or other places widely used.

Key words:Hydraulic hoist; design; Computation; Valve group

1.1.2液压防爆提升机的用途、工作原理、类型

(1)用途

液压防爆提升机主要用于有沼气、煤尘爆炸危险的煤矿井下,作为提升和下放人员、煤、矸石及运输材料、设备之用。也可供其它有易燃气体和爆炸危险,要求使用防爆电气设备的场所作起重运输用.在煤矿主要是用于采区上、下山运输,同时也可用于井下暗立井、暗斜井和掘进时的提升运输及井下辅助运输.

(2)工作原理

液压防爆提升机由机械、液压传动、电气部分等组成。采用鼠笼型防爆主电机驱动双向变量主油泵;主油泵和二台内曲线低速大扭矩液压马达组成闭合回路、衡扭矩液压调速系统;二台液压马达分别布置在主组装置两侧与主组联接,拖动提升机运转。提升机有二台辅助油泵,一台工作、一台备用。辅助油泵中,其大泵作补油泵用,给主液压传动补油;小泵作控制用,给制动系统、操作系统、调绳系统供油。

提升机采用远距离液控操纵方式。司机通过操作液压式比例先导伐给主油泵的比例油缸输入由低到高的压力油,使主油泵的行程调节器动作,改变主油泵摆动的缸体的倾角来改变主油泵的流量,以改变液压马达的转速,使提升机起动,加速运转。司机通过操作液压式比例先导伐的手柄扳到不同角度,就可使主油泵输出不同的流量,使提升机得到不同的提升速度。当液压式比例先导伐的手柄扳到最大位置时,提升速度最大。当液压式比例先导伐的手柄扳到中立位置时,提升机停车。当手柄反方向扳动时,提升机反方向运行。

提升机采用盘型闸制动,以实现提升机的正常和紧急制动。正常制动的制动力靠液压传动装置本身产生的。提升时负荷成为制动力。下放重物时液压马达变为泵。液压泵变为液压马达。使电动机产生发电反馈制动。盘型制动器不参与工作制动。只是在提升机卷筒停止运转后作为保险装置来使用。提升机在运行中出现故障,保险装置自动工作,也可由司机用脚踏开关进行紧急制动停车。

提升制动系统有压力油时,盘型闸制动打开,没有压力油盘型闸制动。司机操作的液压式比例先导阀共有4个减压阀,其中两个减压阀操纵主油泵正反向供油,另两个减压阀控制盘型闸的开起,当司机操作液压式比例先导伐时,同时压下两个阀,一个阀输出的压力油进主泵的比例油缸,使主泵向液压马达供油并使其运转。另一个阀输出的压力油供制动系统的液控换向阀,使制动系统向盘型制动器供油,盘型闸制动打开、使提升机运转。当司机扳回液压式比例先导伐的手柄扳到中立位置时,(比例油缸向中位返回)主泵流量逐渐减小到零,液压马达停止运转。同时液控换向阀由于没有压力油而复位,提升机制动。这样就实现了开始提升运转时,盘型制动闸同时打开,提升机停止运转时,盘型制动闸同时立刻制动,保征了提升机的安全运行。 1.5液压系统设计方案的确定

   1.5.1概述

   液压绞车的液压系统是液压绞车的核心部分。液压绞车液压系统的任务是将电动机产生的机械能转换为液压能,再将液压能转变为机械能对外作功拖动外负载。

   液压绞车的液压系统一般由以下四个部分液压元件组成:

   (1)动力元件。液压泵是液压系统的动力元件,其作用是将原动机的机械能转变为液压能供给液压系统。

   (2)执行元件。液压马达是液压系统的执行元件,其作用是将液压系统提供的液压能转变为机械能,拖动外部负载做机械运动

   (3)控制元件。液压系统用阀作控制元件,执行机构的运动都具有一定的力、速度和方向,这三个要素都是由阀来控制的。阀可分为压力控制阀、流量控制阀和方向控制阀。

(4)辅助元什。除了上述三类元件外,其他元件均为辅助元件。它们主要用于液压油的储存、油管的连接和密封,油液的滤清、冷却、液压系统某些参数的显示等。

液压绞车液压系统主要元件的动力传递关系如图1.6所示。电动机将机械能输入液压系统,由液压动力元件—液压泵转变为液压能,通过控制元件—液压阀凋整控制压力油的方向、流量和压力的大小,然后传递给执行元件—液压马达,使其按照一定的方向、速度和出力带动负载运动和工作,构成液压系统。

图1.6液压绞车液压系统的动力传递关系

1.5.2方案确定

   液压系统按照液流循环方式不同分为开式系统和闭式系统。矿用防爆液压提升绞车一般常采用闭式系统,采煤工作面的液压安全绞车一般常采用开式系统。其主要理由是:

   (1)考虑到闭式系统能够满足防爆液压提升绞车提升重物的工作要求。在提升时能可靠地支承住重物,不会自行下落,在重物下降时能有效的控制下降速度,并且能量可以通过电动机发电反馈电网回收。

   (2)考虑到防爆液压提升绞车的功率大,闭式系统比开式系统的效率高,可节省电耗。—般开式系统常用定量泵或单向变量泵,它的换向、凋速由阀或泵、阀联合控制,压力过高时,多余的油自溢流阀流回油箱,造成效率损失。而闭式系统一般采用双向变量泵,通过改变变量泵输出油液的方向和流量,控制液压马达的运动方向和速度,回路中压力的高低取决于负载的大小。因而没有过剩的压力和多余的流量,故效率较高。同时,闭式系统可以将开式系统回油背压所造成的能量损失及工作部件换向时的能量损失回收。开式系统为了保证工作部件运动的平稳性,常常特意在液压马达的回油管路上用节流阀或压力阀形成背压。这样回油背压的压力能便白白消耗在节流阀或压力阀内的节流损失上,并转变为热能,引起油液温度升高。但在闭式系统中,液压马达的回油直接流入油泵的进油腔,如果液压马达的排油腔有背压P2,则油泵的进油腔也受到油压P2的作用,而作用在油泵吸油腔的这个压力是帮助电动机推动油泵转动的,因此节省了电动机的一部分动力,使液压系统效率较高。

(3)考虑到防爆液压提升绞车换向较频繁,闭式系统起动,换向工作比较平稳,效率较高。开式系统工作部件的换向,要靠换向阀来实现,换向制动过程中,工作部件的动能便完全消耗在换向阀关闭回油所产生的节流损失上。如果开式系统采用的油泵是定量泵时,工作部件换向制动时不需要油泵供给动力,但是由于油泵的流速一定,压力一定(由溢流阀凋定),所以油泵仍然耍输出功率,这些功率便白白浪费在大量油液经溢流阀流回油箱时所发生的节流损失上了。而闭式系统一般是采用双向变量油泵来控制工作部件的换向,通过一定的控制方式,使油泵的斜盘或斜轴倾角从凋定的某一数值逐渐减少,一直减到零,然后逐渐向反方向增大到所需数值。这样在换向时.油泵输出的功率便相应减少,工作平稳,效率高。

(4)考虑到开式系统结构较简单,油液可在油箱中很好地冷却和沉淀杂质,散热良好,故较适应采煤工作面液压安全绞车使用。而闭式系统结构较复杂,为了补偿泄漏需要设置油箱和补油泵;为了使液压系统的油得到冷却需要设置油冷却器,不断将系统中的一部分热油置换出来,经油冷却器再回到油箱以进行冷却;同时又将油箱中冷却了的油液输入到系统中去。

参考文献

[1] 吴辉海.液压绞车.北京:煤炭工业出版社,1989

[2] 洪晓华主编.矿井运输提升.徐州:中国矿业大学出版社,2005

[3] 余发山.国内外矿井提升的现状与发展.煤矿机电,1995(3)

[4] 张兰俊.电控防爆和液压防爆提升机比较分析.煤矿机械,1999(3)

[5] 彭佑多.大惯量液压提升机液压系统.液压与气动,2000(5)

[6] 能源部编.煤矿安全规程.北京::煤炭工业出版社,1992

[7] 官忠范主编.液压传动系统.北京:机械工业出版社,1989

[8] 王占林.近代液压控制.北京:机械工业出版社,1997

[9] 雷天觉主编.液压工程手册.北京:机械工业出版社,1990

[10] 机械设计手册编委会编著.机械设计手册[第二卷].北京:机械工业出版社,  

    2004

[11] 机械设计手册编委会编著.机械设计手册[第二卷].北京:机械工业出版社,  

    2004

[12] Hitoshi shiraishi.CMAC Neural Network Controller for Fuelinjection System .IEEE

Transactions on Control Systems Technology.Vo1.3,no1,march,1995

[13] 张延宝.对副井使用液压提升机的建议.山西煤炭,1998(4)

[14] 方明华.浅论液压防爆提升绞车的经济技术比较.煤矿设计,1996(5)

[15] 刘长年.液压伺服系统分析与设计.北京:科学出版社,1987

[16] World Mining Equipent,Mike Woof looks at the hoisting market ,2000(11)

[17] 陈维健,齐秀丽.矿井运输及提升机械.徐州:中国矿业大学出版社,1989

内容简介:
英文原文Mine hoisting in deep shafts in the 1st half of 21st Century Alfred Carbogno 1 Key words: deep shaft, mine hosting, Blair winder, rope safety factor, drum sizing, skip factor Introduction The mineral deposits are exploited on deeper and deeper levels. In connection with this, definitions like “deep level” and “deep shaft” became more and more popular. These definitions concern the depth where special rules regarding an excavation driving, exploitation, rock pressure control, lining construction, ventilation, underground and vertical transport, work organization and economics apply. It has pointed out that the “deep level” is a very relative definition and should be used only with a reference to particular hydro-geological, mining and technical conditions in a mine or coal-field. It should be also strictly defined what area of “deep level” or “deep shaft” definitions are considered. It can be for example: - mining geo-engineering, - technology of excavation driving, - ventilation (temperature). It is obvious that the “deep level” defined from one point of view, not necessarily means a “deep level” in another area. According to 5 as a deep mine we can treat each mine if: - the depth is higher than 2300 m or - mineral deposit temperature is higher than 38 C. It is well known that the most of deep mines are in South Africa. Usually, they are gold or diamonds mines. Economic deposits of gold-bearing ore are known to exist at depths up to 5000 m in a number of South Africa regions. However, due to the depth and structure of the reef in some areas, previous methods of reaching deeper reefs using sub-vertical shaft systems would not be economically viable. Thus, the local mining industry is actively investigating new techniques for a single-lift shaft up to 3500 m deep in the near future and probably around 5000 m afterwards. When compared with the maximum length of wind currently in operation of 2500 m, it is apparent that some significant innovations will be required. The most important matter in the deep mine is the vertical transport and the mine hoisting used in the shaft. From the literature 1-12 results that B.M.R. (Blair Multi-Rope) hoist is preferred to be used in deep mines in South Africa. From the economic point of view, the most important factors are: - construction and parameters of winding ropes (safety factor, mainly), - mine hoisting drums capacity, This article of informative character presents shortly above-mentioned problems based on the literature data 1-12. Especially, the paper written by M.E. Greenway is very interesting 3. From two transport systems used in the deep shaft, sub-vertical and the single-lift shaft systems, the second one is currently preferred. (Fig.1.) 6 Hoisting Installation The friction hoist (up to 2100 m), single drum and the double drum (classic and Blair type double drum) hoist are used in deep shafts in South Africa. Drum winders Drum winders are most widely used in South Africa and probably in the world. Three types of winders fall into this category - Single drum winders, - Double drum winders, - Blair multi-rope winders (BMR). Double drum winders Two drums are used on a single shaft, with the ropes coiled in opposite directions with the conveyances balancing each other. One or both drums are clutched to the shaft enabling the relative shaft position of the conveyances to be changed and permitting the balanced hoisting from multiple levels The Blair Multi-Rope System (BMR) In 1957 Robert Blair introduced a system whereby the advantage of the drum winder could be extended to two or more ropes. The two-rope system developed incorporated a two-compartment drum with a rope per compartment and two ropes attached to a single conveyance. He also developed a rope tension-compensating pulley to be attached to the conveyance. The Department of Mines allowed the statutory factor of safety for hoisting minerals to be 4,275 instead of 4,5 provided the capacity factor in either rope did not fall below the statutory factor of 9. This necessitated the use of some form of compensation to ensure an equitable distribution of load between the two ropes. Because the pulley compensation is limited, Blair also developed a device to detect the miscalling on the drum, as this could cause the ropes to move at different speeds and so affect their load sharing capability. Fig.2 shows the depth payload characteristics of double drum, BMR and Koepe winders. The B.M.R. hoist is used almost exclusively in South Africa, probably because they were invented there, particularly for the deep shaft use. There is one installation in England. Because of this hoists physical characteristics, and South African mining rules favouring it in one respect, they are used mostly for the deep shaft mineral hoisting. The drum diameters are smaller than that of an equivalent conventional hoist, so one advantage is that they are more easily taken underground for sub-shaft installations. A Blair hoist is essentially a conventional hoist with wider drums, each drum having a centre flange that enables it to coil two ropes attached to a skip via two headsheaves. The skip connection has a balance wheel, similar to a large multi-groove V-belt sheave, to allow moderate rope length changes during winding. The sheaves can raise or lower to equalize rope tensions. The Blair hoists physical advantage is that the drum diameter can be smaller than usual and, with two ropes to handle the load, each rope can be much smaller. The government mining regulations permit a 5 % lower safety factor at the sheave for mineral hoisting with Blair hoists. This came about from a demonstration by the% permits the Blair hoists to go a little deeper than the other do. On the other hand, the mining regulations require a detaching hook above the cage for man hoisting. The balance wheel does not suit detaching hooks, so a rope-cutting device was invented to cut the ropes off for a severe overwind. This was tested successfully but the Blair is not used for man winding on a regular basis. The B.M.R. hoist has been built in three general styles similar to conventional hoists. The three styles are (Fig. 3 and 4): The gearless B.M.R. hoist at East Dreifontein looks similar to an in-line hoist except that the drums are joined mechanically and they are a little out of line with each other. This is because each drum directly faces its own sheaves for the best fleet angle. The two hoist motors are fed via thyristor rectifier/inverter units from a common 6.6-KV busbar. The motors are thus coupled electrically so that the skips in the shaft run in balance, similar to a conventional double-drum hoist. Each motor alternates its action as a DC generator or DC motor, either feeding in or taking out energy from the system. The gearless Blair can be recognized by the offset drums and the four brake units. A second brake is always a requirement, each drum must have two brakes, because the two drums have no mechanical connection to each other. Most recent large B.M.R. hoists are 4.27 or 4.57 m in diameter, with 44.5 47.6 mm ropes 1. In arriving at a drum size the following parameters have been used: - The rope to be coiled in four layers, - The rope tread pressure at the maximum static tension to be less than 3,2 MPa, - The drum to rope diameter ratio (D/d) to be greater than 127 to allow for a rope speed of 20 m/s. With the above and a need to limit the axial length of the drums, a rope compartment of 8,5 m diameter by 2,8 m wide, was chosen. The use of 5 layers of coiled rope could reduce the rope compartment width to 2,15 m but this option has been discarded at this stage because of possible detrimental effects on the rope life. One problem often associated with twin rope drum hoists is the rope fleeting angle. The axial length of the twin rope compartment drums requires wide centres for the headgear sheaves and conveyances in the shaft. To limit the diameter of the shaft, the arrangement illustrated in Fig. 4 has been developed and used on a hoist still to be installed. Here, an universal coupling or Hookes Joint has been placed between the two drums to allow the drums to be inclined towards the shaft center and so alleviate rope fleeting angle problem, even with sheave wheels at closer centres 11. The rope safety factor The graphs in Fig. 5 illustrate the endload advantage with reducing static rope safety factors. While serving their purpose very well over the years, the static safety factor itself must now be questioned. Static safety factors, while specifically relating to the static load in the rope were in fact established to take account of: a. Dynamic rope loads applied during the normal winding cycle, particularly during loading, pull-away, acceleration, retardation and stopping, b. Dynamic rope loads during emergency braking, c. Rope deterioration in service particularly where this is of an unexpected or unforeseen nature. If peak loads on the rope can be reduced so that the peak remains equal to or less than that experienced by the rope when using current hoisting practices with normal static rope safety factor, the use of a reduced static rope safety factor can be justified. The true rope safety factor is not reduced at all. This is particularly of importance during emergency braking which normally imposes the highest dynamic load on the rope. Generally, the dynamic loads imposed during the skip loading, cyclic speed changes and tipping will be lower than for emergency braking but their reduction will of course improve the rope life at the reduced static rope safety factor. The means, justification and safeguards associated with a reduced static safety factor are discussed in 4,7,9,12. Based on the static rope safety factor of 4, the rope endload of 12843 kg per rope can be achieved. With twin ropes, this amounts to an endload of 25686 kg. With a conveyance based on 40 % of payload of 18347 kg with a conveyance of 7339 kg. There are hoisting ropes of steel wires strength up to Rm = 2300 MPa (Rm up to 2600 MPa 6 is foreseen) used in deep shafts. There are also uniform strength hoisting ropes projected 2,8. Conveyances The winding machines made from a light alloy are used in hoisting installations in deep shafts. The skip factor (S) has been defined as the ratio of empty mass of the skip (including ancillary equipment such as rope attachments, guide rollers, etc) to the payload mass. If the rope end load is kept constant, a lower skip factor implies a larger payload in other words, a more efficient skip from a functional point of view. However, the higher the payload for the same rope end load, the larger the out-of-balance load implying a more winder power going hand in hand with the higher hoisting capacity. If, on the other hand, the payload is fixed, a lower skip factor implies a lower end load and a smaller rope-breaking load requirement. Under these conditions, an out-of-balance load attributable to the payload would remain the same, but that due to the rope would reduce slightly. The sensitivity of depth of wind and hoisting capacity to skip the factor is illustrated in Fig. 6 and 7. A reduction of skip factor from 0,5 to 0,4 results in a depth gain of about 40 m for Blair winders and 50 m for single-rope winders. The increase of hoisting capacity for a reduction of skip factor by about 0,1 is about 10 %. Typical values for the “skip factor” are about 0,6 for skips and about 0,75 for cages for men and material hoisting. Reducing skip factors to say about 0,5 is a tough design brief and the trade-offs between lightweight skips and maintainability and reliability soon become evident in service. The weight can be readily reduced by omitting (or reducing in thickness) skip liner plates but this could reduce skip life by wear of structural plate leading to the high maintenance cost or more frequent maintenance to replace thinner liner plates. Similarly, if the structural mass is saved by reducing section sizes or changing the material from steel to aluminium for example, the structural reliability is generally reduced and the fatigue cracking becomes more efficient. Some success has been achieved in operating large capacity all aluminium skips with low skip factors but the capital cost is high and a very real hoisting capacity constrain must exist before the additional cost is warranted. It would appear that the depth and hoisting capacity improvements are better made by reducing the rope factor of safety and increasing the winding speed. The philosophy of the skip design should be to provide robust skips with reasonable skip factors in the range of 0,5 to 0,6 that can be hoisted safely and reliably at high speeds and that are tolerant to the shaft guide misalignment. It should be noted that some unconventional skips have been proposed (but not yet built and tested) that could offer skip factors as low as 0,35. Conclusions The first installation of Blaire hoists took place in 1958. From that time we can observe a continuous development of this double-rope, double-drum hoists. Currently, they are used up to the depth of 3 150 m (man/material hoist at the Moab Khotsong Mine, to hoist 13 500 kg in a single lift, at 19,2 m/sec, using 2 x 7400 kW AC cyclo-convertor fed induction motors). The Blair Multi-Rope system can be use either during shaft sinking or during exploitation. The depth range for them is 715 to 3150 m and the maximum skip load is 20 tons. In South Africa in deep shafts single lift systems are preferred. References 1 BAKER. T.J.: New South African Drum Hoisting Plants. CIM Bulletin, No 752, December 1994, p. 86-96. 2 CARBOGNO, A.: Winding Ropes of Uniform Strength. 1st International Conference LOADO 2001. Logistics and Transport. Hotel Permon, High Tatras, June 6th 8th 2001 p.214-217. 3 GREENWAY, M.E.: An Engineering Evaluation of the Limits to Hoisting from Great Depth. Int. Deep Mining Conference: Technical Challenges in Deep Level Mining, Johannesburg, SAIMM, 1990 p.449-481. 4 HECKER, G.F.K.: The Safety of Hoisting Ropes in Deep Mine Shafts. International Deep Mining Conference: Technical Challenges in Deep Level Mining. Johannesburg, SAIMM, 1990 p. 831-838. 5 HILL, F.G, MUDD J,B: Deep Level Mining in South African Gold Mines. 5th International mining Congress 1967, Moscow, p. 1 20. 6 LANE, N.M: Constraints on Deep-level Sinking an Engineering Point of View. The Certificated Engineer, vol. 62, No6, December 1989/January 1991 p. 3-9. 7 LAUBSCHER, P.S.: Rope Safety Factors for Drum Winders Implications of the Proposed Amendments to the Regulations. Gencor Group, 1995 Shaft Safety Workshop. Midrand, Johannesburg, November 1995, paper No 5 p.1-11. 8 MAC DONALD, D.H., PIENAAR, F.C.: State of the Art and Future Developments of Steel Wire Rope in Sinking and Permanent Winding Operations. Gencor Group, Shaft Safety Workshop Magaliesberg, 1994, paper No 13, p. 1-21. 9 MCKENZIE, I.D.: Steel Wire Hoisting Ropes for Deep Shafts. International Deep Mining Conference: Technical Challenges in Deep Level Mining. Johannesburg, SAIMM, 1990 p. 839-844. 10 SPARG, E.N.: Development of SA- Designed and Manufactured Mine Winders. The South African Mechanical Engineer vol.35, No 10, October 1985 p. 418-423. 11 SPARG E,N.: Developments in Hoist Design Technology Applied to a 4000 m Deep Shaft. Mining Technology, No 886, June 1995, p. 179-184. 12 SYKES, D.G., WIDLAKE, A.C.: Reducing Rope Factors of Safety for Winding in Deep Levels Shafts. International Deep Mining Conference. Technical Challenges in Deep Level Mining. Johannesburg, SAIMM, 1990 p. 819-829. 中文译文21 世纪前半叶矿井提升机在深井中的应用关键词: 深井,矿井提升机,布莱尔提升机, 钢丝绳安全要素,滚筒尺寸, 骤变要素介绍矿物沉淀物在越来越深的水平上被开采。 关于这方面,像“深水平面”和“深井”的定义 变得越来越流行了。这些定义与有关特殊规则方面的深度有关,涉及到挖掘操纵 、开采、 岩石压力控制、内层建造、通风,地下和垂直的运输, 劳动组织和经济学应用。“ 深水平面 ”已经被指出是一种非常相对的定义,这个定义应当只能用于采矿或煤领域有关特殊的水-地质学, 采矿和技术条件方面的参考。 它也应当用于严格定义已经公认的有关“深水平面”或“深井”领域的定义。 可以举例来说:- 采矿工程技术,- 开采操纵技术,- 通风 (降低温度).明显的是,从一方面得到的“深水平面”定义,在其他领域并不意味着“深水平面” 。 根据第5段提到的“深井”,我们可以设想每一个矿井:- 深度超过2300米深或者- 矿石沉积物的温度超过38摄氏度。广为人知的是大部分深井在南非。 通常,它们是金矿或者钻石矿井。人们都知道像黄金方面矿石的经济沉淀物存在于南非一些深达5000米的深井领域。 然而,在一些区域中,存在暗礁的深度和结构要素,先前在垂直的深井中使用的到达深度暗礁的方法在经济上不可取。 因此,当地的采矿业正在积极地研究在不久的将来能够用于深度达到3500米或者未来深度在5000米左右的矿井中的单一提升技术。相对于当今深度达2500米的矿井中的提升技术,它的一些创新在将来会有很大的意义。在深井中最重要的事件是垂直运输以及矿井提升技术在井中的应用。参考文献的1至12篇可以得出这样的结论:布莱尔多绳提升机在南非的深井应用中是首选的。 从经济学的观点看, 最重要的要素是:- 提升绳索的构造和参数(主要是安全要素)- 矿井提升绞车的承载能力,这篇见闻广博性质的文章简略的介绍了上述基于参考文献1至12篇所反映的问题。尤其, M.E. Greenway写的文献【3】非常有趣。从被应用于深井中的双运输系统,接近垂直的以及单一的井中提升系统,第二种系统是目前首选的。参见插图1/参考文献【6】。提升装置摩擦提升机(提升深度达2100米),单独的 和双滚筒提升机(第一流的和布莱尔形式的双滚筒提升机)广泛应用于南非地区。1 Carbogno Alfred Ing 博士, 来自波兰格利维策市西里西亚技术大学,采矿机械化学会, Akademicka 2 , PL 44-101 Gliwice, (他于2002年8月5日修订了先前被公认为是标准的版本)滚筒提升机滚筒提升机被广泛应用于南非或许全世界。 三种类型的提升机属于这样的类型:- 单一滚筒提升机,- 双鼓提升机,- 布莱尔多绳绕线机 (BMR).双滚筒提升机双滚筒应用于单井,钢丝绳以相对的方向缠绕在它的上面,以保持运输工具的平衡。单一或者双滚筒附着于井,使得运输工具能够在相对于井的位置上变换以及从不等高的水平面平稳的提升。布莱尔多绳系统 (BMR)在 1957 年,布莱尔罗伯特引进了一种提升系统,这种系统可以将滚筒的优势扩大到能够缠绕两根或多根钢丝绳。 这种双绳系统发展成为二合一的滚筒,每一部分一根绳以及两根绳附着在单一的运输工具上。 他也开发了一种张紧滑轮装置,把它附着在运输工具上。 矿山部门说:倘若任何一根绳的承载能力要素不能降至法定要素9以下,将允许提升机械的法定安全要素从4275更改为45。这样一种补偿的必要性使得处于两根绳之间的载荷能够平衡分配。因为滑轮的补偿作用有限,布莱尔同样发明了一种装置来监测滚筒的误差,因为这样可以使得钢丝绳能够以不同的速度移动以及干预两根绳能够按他们的实际承载能力分配。 图2描述了双滚筒的深度有效载荷的特性,布莱尔和Koepe提升机。布莱尔提升机几乎专一性的应用于南非地区,或许由于这些机器是在那儿发明的,尤其是应用于深井。 在英国有一套设备。 因为这种提升机的物理性能好,以及南非地区的矿井规程在某一方面特别亲赖于它,他们主要被应用于深井提升系统。这种滚筒的直径比普通相当规格的提升机小,因此一方面的优点是它们更加便于在井下安装。布莱尔提升机本质上是带有宽鼓的常规提升机,每个滚筒有一个中心凸轮,以使得两根绳子能够缠绕在上面,用来急速改变两个主导轮。 急变系统拥有一个平衡轮, 类似于大的多凹槽形的V带滑轮, 以允许在提升过程中绳索长度的适度变化。滑轮能升起或者降低以使得钢丝绳的张紧力相等。布莱尔提升机的物理性能优势表现在滚筒的直径比普通的小,以及两根绳子同时承载载荷,使得每根绳子能够变得更加小些。政府部门的采矿规则允许使用布莱尔提升机的矿井在滑轮安全要素方面低于正常5。这从发明家罗勃特布莱尔的演示可以看出, 一根严格符合要求的钢丝绳,以额定速度运转, 由剩余的钢丝绳承担负载。 这 5% 的安全要素允许布莱尔提升机比其他提升机稍微深入一些。 另一方面, 采矿规则要求为方便人们的升降,在罐笼的上方必须安装有可分离的吊钩。 平衡轮不适合用于分离吊钩,因此,发明了一种可以切断绳索的装置用来切断旋得很紧的绳索。 这种装置顺利通过试验,但是布莱尔提升机不是用于人类规范准则的提升机。布莱尔提升机已经被应用于三种类似于传统提升机的普通风格的类型中。 这三种风格可见图 3 和图 4。在Dreifontein东部的无传动装置的 B.M.R. 提升机除滚筒连接以及它们相互不在同一中心外,从外表上看似同轴提升机。这是因为每个滚筒直接地面对自己的滑槽轮而获得最佳的深浅角度。 两个提升机的马达通过6.6千伏的半导体闸流管整流换流器/反用换流器来反馈。马达与电相连接以便轴中的急变能够保持平衡,类似于传统的双滚筒提升机。每台马达交替变换它们的作用相当于直流发电机或者直流电动机任意的从系统中输入或者输出能量。无传动装置的布莱尔提升机能够被偏移滚筒和四种刹车装置所检验。 第二种刹车永远是必要的,每个滚筒必须有两个刹车,因为两个滚筒之间没有机械连接。大部分最新的布莱尔提升机直径达到4.27或者4.57米,附带有直径达44.5至47.6毫米的钢丝绳。在达到滚筒
温馨提示:
1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
2: 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
3.本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
提示  人人文库网所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
关于本文
本文标题:液压防爆提升机设计【6张CAD图纸+毕业论文】
链接地址:https://www.renrendoc.com/p-422369.html

官方联系方式

2:不支持迅雷下载,请使用浏览器下载   
3:不支持QQ浏览器下载,请用其他浏览器   
4:下载后的文档和图纸-无水印   
5:文档经过压缩,下载后原文更清晰   
关于我们 - 网站声明 - 网站地图 - 资源地图 - 友情链接 - 网站客服 - 联系我们

网站客服QQ:2881952447     

copyright@ 2020-2025  renrendoc.com 人人文库版权所有   联系电话:400-852-1180

备案号:蜀ICP备2022000484号-2       经营许可证: 川B2-20220663       公网安备川公网安备: 51019002004831号

本站为文档C2C交易模式,即用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知人人文库网,我们立即给予删除!