论文摘要.doc

液压抓斗式矿井水仓清淤机设计【11张CAD图纸+毕业论文】

收藏

压缩包内文档预览:
预览图 预览图 预览图 预览图
编号:422372    类型:共享资源    大小:5.71MB    格式:RAR    上传时间:2015-04-02 上传人:上*** IP属地:江苏
39
积分
关 键 词:
液压 抓斗式 矿井水仓 清淤机 设计 水仓清淤机 cad 图纸 毕业论文 矿井水仓清淤机
资源描述:

液压抓斗式矿井水仓清淤机设计

84页 37000字数+说明书+外文翻译+11张CAD图纸【详情如下】

外文翻译--控制移动液压起重机.doc

封面.doc

小车装配图.dwg

抓斗装配.dwg

抓斗连动杆.dwg

泵组.dwg

活塞杆.dwg

液压抓斗式矿井水仓清淤机设计论文.doc

液压抓斗总装图.dwg

液压操纵台.dwg

液压泵站.dwg

液压系统.dwg

液压系统图.dwg

液压缸.dwg

目录.doc

论文摘要.doc

目   录

1 概  述

1.1起重机械的用途及工作特点

1.2起重机的发展趋势

1.3起重机械的组成和种类

1.4液压抓斗清仓机的基本构成

2 液压抓斗清仓机设计任务书

2.1设计参数

2.2工作条件

2.3设计原则

3 抓斗的设计

3.1抓斗的设计因素?

3.2抓斗的机构原理

3.3抓斗的设计计算

4 小车起升机构和运行机构的计算

4.1升降机构计算

4.2小车运行机构计算

5 大车运行机构的计算

5.1确定传动机构方案

5.2选择车轮与轨道,并验算其强度

5.3运行阻力计算

6液压系统

6.1液压系统总体方案的确定

6.2确定系统工作压力

6.3液压执行元件的设计计算

6.4电动机的选择

6.5联轴器的选择

6.6控制阀的选择

6.7压力表以及压力表开关的选择

6.8液压辅助元件设计

6.9系统的发热及散热计算

6.10过滤器的选择

6.11冷却器的选择

6.12液压管件的选择

6.13阀块设计

6.14 泵站的设计

6.15液压技术的特点和应用情况

7设备液压系统污染的防治

7.1?控制液压系统受污染

7.2加强对液压油品质的控制

7.3结语

结  论

参考文献

摘  要

矿井水仓是煤矿安全生产,防止矿井水灾的重要设施,水仓通常分隔为主仓和副仓,两者轮换清理使用。随着矿井开采深度增大和涌水量增多,水仓内淤积了大量的淤煤,而水仓容积有限,故而必须定期清理。

目前多数煤矿采用人工方式清理,工人们站在煤泥水中,用铁锹及桶刮等方法把煤泥清挖出来,再将煤泥运到附近巷道两旁堆放,待煤泥晾干后再运送上地面,或是将煤泥直接装入矿车中运送到地面。人工清挖不仅劳动强度大,作业效率低,而且清仓周期长,特别在雨水季节还可能会因水仓清理不及时而导致淹井事故。

本文在对现有清仓方法和国内生产或试制过的各种水仓清理设备进行分析研究的基础上,结合液压传动,抓斗起重机械的结构和工作原理介绍了一种用于清理煤矿水仓淤煤的新型水仓清理设备。该设备采用抓斗抓取提升淤煤的工作方式,抓斗的开合及提升全部通过液压缸来实现,抓斗的前移后退及左右移动通过由马达驱动的大小车行走机构带动车架来实现。该设备具有结构简单、动力系统单一,便于安装维护的优点。

关键词:矿井水仓  液压抓斗  清淤设备

ABSTRACT

Wharf coal mine water is safe production, the mine flood prevention essential facilities, water stores are usually separated mainly warehouses and stores of both the use of clean-up rotation. With the increased depth of mining and mine discharge more water stored in a large amount of silt deposition of coal, and the limited volume of water warehouse, therefore must be cleaned regularly.

   At present the majority of mine clearance using artificial means, the workers stand in the water slime, and Yong Tieqiao barrel scraping, and other ways to slime-dug up, and then transported to the nearby roadway slime dumped on both sides, to be delivered later on dried slime Ground, or slime in the mine car loaded directly delivered to the ground. Artificial dug not only labor-intensive, low operating efficiency, and the clearing and long cycle, particularly in the rain season also may be cleaning up water stores do not lead to timely and submerged wells accident.

   In this paper, the clearing of existing methods and a domestic production or trial production of water equipment to clean up positions on the basis of analysis, the combination of hydraulic, mechanical grab lifting of the structure and working principle of introducing a coal mine for clean-up Coal Wharf silting of water a new water cleaning equipment warehouse. Grab the equipment used to crawl enhance the work of coal silt, grab the Open-and upgrade all through the hydraulic cylinders to achieve, grab the back and around moving forward by the size of the motor-driven vehicles driven cars run institutions - To achieve. The device is simple in structure, power system a single, easy installation and maintenance advantages.

Keywords:Wharf mine water ;Hydraulic grab ;Dredging equipment

1 概  述

1.1起重机械的用途及工作特点

起重机械主要用于装卸和搬运物料,是现代化生产的重要设备。它不仅广泛应用于工厂、矿山、港口、车站、建筑工地、电站等生产领域,而且也应用到人们的生活领域。使用起重运输机械,能减轻工人劳动强度,降低装卸费用,减少货物的破损,提高劳动生产率,实现生产过程机械化和自动化不可缺少的机械设备。

起重机械是以间歇、重复工作方式,通过起重吊钩或其它吊具的起升、下降,或升降与运移重物的机械设备。其工作特点具有周期性。在每一工作循环中,它的主要机构作一次正向及反向运动,每次循环包括物品的装载及卸载,搬运物品的工作行程和卸载后的空钩回程,前后两次装载之间还有包括辅助准备时间在内的短暂停歇。

综合起重机械的工作特点,从安全技术角度分析,可概括如下:

⑴起重机械通常具有庞大的结构和比较复杂的机构,能完成一个起升运动、一个或几个水平运动。例如,桥式起重机能完成起升、大车运行和小车运行三个运动;门座起重机能完成起升、变幅、回转和大车运行四个运动。作业过程中,常常是几个不同方向的运动同时操作,技术难度较大 。

⑵所吊运的重物多种多样,载荷是变化的。有的重物重达几百吨乃至上千吨,有的物体长达几十米,形状很不规则,还有散粒、热融状态、易燃易爆危险物品等,使吊运过程复杂而危险。

结  论

通过此次毕业设计,使我受益匪浅,在将大学期间所学专业基础知识都全面检验一遍的同时更开阔了我的知识面,对我日后的学习和工作都将有很大的帮助。

本文满足设计要求,设计题目主要是针对矿水仓清淤设备及方法所存在的问题,提出了一种具体的设计方案。我主要通过以下几个阶段完成:

1、总体方案的确定

主要对装置的各个部件进行分析。包括机架的结构形式、抓斗装置,提升装置和大小车行走装置等。这个过程是设计的关键所在,方案的好坏直接关系到整个装置性能的优越与否,因而也是我的工作重点。在老师的指导下,最终确定了现有的方案。

2、抓斗的设计

这个过程主要是把总体方案中液压系统应用于抓斗开合升降的构思给表达出来,液压抓斗是整个装置的关键部件,由于设计条件有空间及环境等要求,在对抓斗的设计过程中都要考虑到空间有限的因素,因此抓斗机构采用了液压缸水平布置,及反曲柄联动的机构。此过程完成了抓斗在抓取物料闭合过程中的受力分析及计算。

3、大小车架的设计

车架是承载所有设备的平台,车架结构要求具有足够的刚度、强度和稳定性。。在这个设计阶段,主要的工作是确定了大小车架的结构、承载平台的形式和安装方式,把车架中各个组件、零件以及它们之间的连接形式表示出来,并对车架进行了受力分析及校核

4、液压系统的设计

液压系统是整个装置控制系统的一部分,它和电控系统相结合形成了整个装置的控制系统。在装置中,各个执行元件主要是采用液压驱动的方式。在这个设计阶段,我的主要工作包括液压泵站及其附属器件的设计,各个执行元件的选型设计。    

5、零部件的设计

这个过程主要是对装置中一些重要的零部件进行设计。包括驱动装置的设计和液压缸的设计等。 

由于时间有限,以及所学知识的局限性,本设计从整体上来说,还存在很多需要改进的地方,其中也存在着或多或少的问题和错误。这也是本次毕业设计的不足之处,对此恳请老师给予批评指正,我将在以后的工作中吸取经验。

参考文献

[1] 起重运输机械,陈道南等编,机械工业出版社,1982年;

[2] 起重机课程设计,陈道南等编,冶金工业出版社,1993年;

[3] 起重机设计手册,张质文等编,中国铁道出版社,1998年;

[4] 起重机课程设计,陈道南等编,冶金工业出版社,1983年;

[5] 起重机设计规范,中华人民共和国国家标准,中国标准出版社,1984年;

[6] 机械设计手册第2卷,成大先等编,化学工业出版社,1996年;

[7] 实用机械设计手册,吴相宪等编,中国矿业大学出版社,1993年;

[8] 起重机械安全技术检验手册,任树奎等编,中国劳动出版社,1993年;

[9] 起重机械,付东明等编,机械工业出版社,1992年;

[10] 起重运输机械设计基础,范祖尧等编,机械工业出版社,1991年;

[11] 起重运输机械计算,沈静宝等译,中国铁道出版社,1982年;

[12] 起重运输机械图册,倪庆兴等编,机械工业出版社,1992年;

[13] 起重机钢结构制造工艺,付荣柏等编,中国铁道出版社,1991年;

[14] 起重运输机械金属结构,王金诺等编,中国铁道出版社,1984年;

[15]现代液压技术应用220例,张利平等编,化学工业出版社,2004年;

[16]机械设计手册第四卷,成大先等编,化学工业出版社,1996年;

[17] 液压设计禁忌,周世昌主编,机械工业出版社,2002年;

[18] 液压技术手册,范存德主编,辽宁科技出版社,2004年;

[19]液压与气压传动,许福玲 陈尧明 等编,机械工业出版社,2004年;

[20] G.A.Manson.Time optimal control of an overhead crane mode1.Optimal Control Applications and Methods,No.3,1982;

[19] W.Singhose,L.Porter and M.Kenison,Effects of hoisting on the input shaping of gantry cranes.Control Engineering Practice,No.2,2000。

内容简介:
翻译部分英文原文CONTROL OF MOBILEHYDRAULIC CRANESMarc E.MNZERAalborg UniversityInstitute of Energy Technology,Pontoppidanstrde 101DK-9220 Aalborg, DenmarkThe goal of the thesis described in this paper is to improve the control of mobile hydraulic cranes. The thesis is split into five parts: a requirements analysis, an analysis of the current systems and their problems, an analysis of different possibilities for system topologies, development of a new control system for the near future based on electro-hydraulic separate meter in / separate meter out valves, and finally an analysis of more advanced and complex solutions which can be applied in the more distant future. The work of the thesis will be done in coop-eration with industry so the thesis will have more of an industrial focus than a purely theoretical focus.Key words: Mobile Hydraulic Cranes, Control Strategies, Separate Meter-in/Separate Meter-out.1 INTRODUCTIONThe goal of the thesis described in this paper is to improve the control of mobile hydraulic cranes. A mobile hydraulic crane can be thought of as a large flexible mechanical structure which is moved by some sort of control system. The control system takes its input from a human operator and translates this command into the motion of actuators which move the mechanical structure. The definition of this control system is purposely left vague in order not to impose any con-straints on its design. The control system consists of actuators which move the mechanical structure, a means of controlling the actuators, a means of supplying power to the actuators,and a way of accepting inputs from the operator. It is this control system which is the target of this thesis. The goal is to analyze the requirements made on the control system and present guidelines for the design of new control systems.The thesis will be split into five parts:1.Analysis of the requirements of the control system, from the perspective of the opera-tor, the mechanical system, efficiency, stability, and safety requirements.2.Analysis of current control systems and what their problems are.3.Analysis of the different options for the control system: different types of actuators,different types of control strategies, and different ways of organizing components.4.Presentation of a new type of control system, which is commercially implementable. A system that will meet the needs of industry in the near future.5.Analysis of more optimized systems, with higher performance, better efficiency, more flexible control, etc. This will be less commercially applicable but will be a starting point for more research.2 SECTIONS OF THE THESIS2.1Requirements Analysis of the Control System Before starting detailed work on developing new control systems, it is important to analyze what the exact demands are on the control system. The control system is influenced by many factors. For example: the mechanical structure it is controlling, the human operator, effi- ciency, stability, and industry regulations.Industry regulations are the first requirements that have to be addressed. Things like hose rupture protection and runaway load protection make a lot of demands on the control system.After regulations, stability is the next most important requirement; without stability the con-trol system cant be used. Once stability has been assured, the performance requirements of the control system have to be set. They are determined by the mechanical structure of the crane and the human operator. The mechanical structure of a mobile hydraulic crane is a very large flexible structure which has very low natural frequencies. To prevent oscillations it is necessary to keep the speed of the control system below this natural frequency or to develop a control system which can increase this frequency. The human operator also imposes limits on the control system. If the control system is too slow or too fast then it is impossible for a human operator to give it proper inputs. And finally, once the regulations have been met, sta-bility is assured, and the performance is at the right level, the power efficiency of the control system has to be optimized.2.2Analysis of Current Control SystemsBefore designing a new control system it is good to analyze the current control systems to find out what their problems are. Current control systems are mainly hydraulic and can suffer from three main problems:1.Instability2.High cost3.Inefficiency2.2.1InstabilityInstability is a serious problem as it can cause injury to human operators or damage to equip-ment. When a system becomes unstable it usually starts to oscillate violently. To avoid insta-bility in current systems, the designers either sacrifice certain functions which are desirable,or add complexity and cost. For example, in the crane shown in Figure 1, it would be desir-able to have control over the speed. But due to the safety system that cranes are required to have, standard speed control is not stable. To add speed control requires a more complex and more expensive mechanical system.The parameters of a hydraulic system, such as temperature or load force, also affect stability.A system that is stable with one set of parameters might be unstable with another set. To ensure stability over the entire operating range of the system, performance must sometimes be sacrificed at one end of the parameter range.2.2.2High costCurrent systems are purely hydraulic-mechanical, so if the user wants a certain function, the user buys a certain hydraulic-mechanical component. Because most users have different requirements, there are many different variations of the same basic component. This means that many specialized components must be manufactured rather than one standard product.This drives up the cost of components.2.2.3InefficiencyOne form of inefficiency in current systems is due to the link between the flows of the two ports of the cylinder. This is because most valves use a single spool to control the flow in both ports. Because of this link, it is impossible to set the pressure levels in the two sides of the cylinder independently. Therefore, the outlet side will develop a back pressure which acts in opposition to the direction of travel, which increases the pressure required on the inlet side to maintain motion. Since the force generated by the actuator is proportional to the pressure dif- ference between the two sides, the actual pressures in the cylinder dont affect the action of the cylinder. For example, the action of the cylinder for 0psi/600 psi would be the same as 1000psi/1600psi. However, in the second case, the power supply would have to supply much more power. This extra power is wasted.2.3Different Options for Control SystemsCurrent control systems use hydraulic actuators with directional/proportional valves to control the movement. However there are many different options for controlling a cylinder. Options range from new high performance electro-hydraulic valves, to separate meter in / separate meter out (SMISMO) valves, to hydraulic bus systems, to intelligent actuators with built in power supplies, to pump based control strategies. These systems all have advantages and dis-advantages which need to be analyzed if the most optimum solution is to be chosen.2.4 Near Future SolutionIt is expected that even if it is proven that a completely new system topology is the optimum configuration, the crane manufacturers and component manufacturers will not accept the new technology overnight. This will most likely take time, so an interim solution will be devel-oped.This solution will be made up of micro computer controlled Separate Meter In / Separate Meter Out (SMISMO) valves (Elfving,Palmberg 1997;Jansson,Palmberg, 1990; Mattila,Virvalo 1997). SMISMO valves will make it possible to implement new control strategies which are more efficient and stable. The micro computer will make it possible to introduce flexibility to valves. Variants can be programmed in software. This eliminates the need to manufacture hundreds of different variants. The crane manufacturer will be able to choose the exact functions he wants in his valve, while the component manufacturer will have to manu-facture only one valve. This will lower the cost, even though the performance will have increased.2.5 Analysis of Higher Performance SolutionsThis analysis will depend on the results of the analysis of different topologies. If it is shown that pump based control is to be the way of the future for example, then analysis will be per-formed in this area. Another area which will also be explored, is tool position control.3 LABORATORY FACILITIESAs the focus of this thesis is on developing control strategies that can be implemented on commercial machinery, much emphasis will be placed on experimental results. Experimental results will be obtained from two systems. The first, a simple one degree of freedom crane,was designed as an experimental platform. The second is a real crane which was donated to the University by Hjbjerg Maskinfabrik (HMF) a Danish crane manufacturer. Refer to Figure 1. Figure 1 Experimental Systems in Laboratory. Left: One DOF crane model. Right: Real Mobile Hydraulic CraneAs there are currently no commercially available separate meter-in/separate meter-out valves,two separate valves will be used instead. A sample circuit of one cylinder is shown in Figure2. The control algorithms which control the valves, will be programmed on a Digital Signal Processor (DSP)/Pentium dual processor system. The DSP will run the control code and the Pentium will do diagnostics and provide a graphical user interface.Figure 2 Separate Meter In / Separate Meter Out Setup4 CURRENT WORK4.1 Flow Control by Direct Actuation of the SpoolMost flow control valves on the market today work with a pressure compensator (Andersen;Ayres 1997). The pressure compensator keeps a constant pressure drop across the main spool of the valve, which keeps the flow constant. However, the addition of a pressure compensator makes the valve more complicated than a simple single spool valve. Another way of doing flow control is to measure the pressure drop across the valve and adjust the spool position to account for this (Back; Feigel 1990). This is not a new idea but has not been implemented commercially because of the high cost of pressure transducers and micro controllers. How-ever, with the current drop in cost of micro controllers and pressure transducers this idea is now commercially feasible.The concept is very simple, spool position is calculated from the Bernoulli equation using the pressure drop across the spool and a reference flow.Even though this is a simple equation, it is not easy to implement. The accuracy of the flow control is dependent on the precision of the position sensors and of the pressure transducers.Noise on the pressure or the position signals can cause stability problems. Filtering the noise,introduces delays in the control which can also affect stability. In addition the Bernoulli equation is not followed exactly over the entire operating range of the valve, so it may be nec-essary to store the valve characteristics as a data table or develop a more complex equation.4.2 Cylinder Control StrategyTo control a hydraulic cylinder, the strategy has to be able to handle four different situations depending on the directions of the load and the velocity of the cylinder. Refer to Figure 3 The control strategies that have appeared in the literature are usually quite complex and depend on measurements of the cylinder position and velocity (Elfving,Palmberg 1997;Mattila;Virvalo 1997). They are also based on rather complex control algorithms. It is the goal of this thesis to start with a control strategy which is based on simple PI controllers and makes no demands for position and velocity of the cylinder. The performance of this system will be lower than a complex control strategy, but it may be easier to implement commercially because it has no need for special sensors and is easier to understand for the average engineer.Figure 3 Different Situations in Crane OperationAnother feature which needs to be acknowledged when designing a control strategy, is thetype of valve used. Mobile hydraulic valves demand low leakage and since most mobilevalves are spool valves, they usually have large overlaps. In addition, to make the cost of thevalve acceptable to industry, the actuation stage on the spool is usually quite slow. This com-bination of large overlap and slow actuation makes it hard to implement many of the strate-gies that have been presented. Pressure control especially becomes difficult when there is an overlap and a slow actuator.One example of a new strategy which is simple and robust is described as follows. Flow con-trol is implemented on the inlet side and pressure control is implemented on the outlet side.The flow control is based on the Bernoulli equation. Pressure control is done by a PI control-ler which maintains a low constant pressure to increase the efficiency and prevent cavitation.To work around large overlaps and slow actuation stage, the pressure controller only does meter out control. This means that if the controller wishes to raise the pressure, it cant add flow to the cylinder, it can only decrease the opening of the meter out port. The benefit of this is that the only time that the spool has to cross the zero position is when the operator wishes to change the direction of motion of the cylinder. For the case where the load force and the velocity are in the same direction, this strategy has to be modified. In this case, the pressure reference of the pressure controller at the outlet is increased to a value which opposes the load force. The pressure reference is increased when it is noticed that the pressure of the inlet side is dropping. The pressure reference is also controlled by a PI controller. A schematic model of the controller system for the load lowering case is shown in Figure 4.At the time of writing this paper the initial experimental tests had been performed on the real crane shown in Figure 1 . Stability was not achieved because the crane is equipped with a load holding valve. However, the load holding valve will be replaced with a pilot operated check valve, which should make it possible to stabilize the system. In current systems, the load holding valve serves two functions, load holding and runaway load protection. Due to the use of a SMISMO valve setup, the runaway load protection is built into the control strategy,therefore the only function which is necessary for the load holding valve to perform is load holding. A pilot operated check valve will be able to do this, without adding complex dynamics which upset the stability of the system.Figure 4 Controller Strategy for Lowering of Load5 CONCLUSIONEven though not much experimental work has been finished, a good start has been made and initial tests have been promising. The outline of the thesis has been developed and organized in a logical manner. The work is split into five parts, requirements analysis, analysis of cur-rent systems, analysis of different topologies, development of a near future solution, and development of a more optimum solution. At the end of the thesis, the control of mobile hydraulic cranes will have been improved.6 ACKNOWLEDGEMENTSThis project is being funded in part by Danfoss Fluid Power A/S. The author would also like to thank Hjbjerg Maskinfabrik (HMF) A/S for the donation of the test crane.7 REFERENCESAndersen, B. R.; Ayres, J. L. (1997). Load Sensing Directional Valves, Current Technology and Future Development, The Fifth Scandinavian International Conference on Fluid PowerBack, W.; Feigel, H. (1990). Neue Mglichkeiten Beim Elektrohydraulischen Load-Sens-ing, O+P lhydraulik und Pneumatik 34Elfving, M.; Palmberg, J. O. (1997). Distributed Control of Fluid Power Actuators -Experimental Verification of a Decoupled Chamber Pressure Controlled Cylinder, 4th Inter-national Conference on Fluid PowerJansson, A.; Palmberg, J. O. (1990). Separate Controls of Meter-in and Meter-Out Orifices in Mobile Hydraulic Systems, International Off-Highway and Powerplant Congress and ExpositionMattila, J.;Virvalo, T. (1997). Computed Force Control of Hydraulic Manipulators, 5th Scandinavian International Conference On Fluid Power中文译文控制移动液压起重机Marc E. MNZER奥尔堡大学能源技术研究所Pontoppidanstrde 101丹麦奥尔堡DK-9220Email: mmuniet.auc.dk在这篇论文中论题描述的目的是改进控制移动液压起重机。论文分为五部分:需求分析;分析当前系统和他们的问题;为系统的拓扑结构分析不同的可能性;基于对电液伺服单独的输入仪表/单独的输出仪表的阀门, 为不久的将来发展一个新的控制系统;最后分析更先进和复杂的解决办法这可以应用在更遥远的将来。论文工作将被用在工业协作中,因此论文将比纯粹对论文焦点有更多对工业焦点。关键词:移动液压起重机;控制策略;单独的输入输出仪表; 1导 言在这篇论文中论题描述的目的是改进控制移动液压起重机。移动液压起重机可认为是作为一个大型灵活的机械结构,这种机械结构被提出某种形式的控制系统。这种控制系统由人类工作者输入并且转换命令成为移动机械机构传动装置的动作。控制系统的定义是故意留下模糊,目的是不加任何约束在它的设计上。该控制系统作动是移动的机械结构,一种控制传动装置的方法,一种给传动装置供电的方法,和接受操作者的输入的方法。这就是控制系统,这篇论文的对象。目标是要分析作出关于控制系统和现有的指导方针的要求,以供设计新的控制系统。论文将分成五个部分:1.对控制系统要求的分析,从操作者的观点,机械系统,功率,稳定性和安全要求这些方面。2.分析目前的控制系统和他们的问题3.为控制系统分析不同的选项:不同类型的传动装置,不同类型的控制策略和不同方式的组织构成。4.介绍来一种新型的商业可行的控制系统。系统可以满足未来的工业要求。5.分析更多的优化系统,如更高的性能,提高效率,更灵活的控制等。这将会减少商业适用但是将是更多研究的一个起点。2 论文部分2.1控制系统的需求分析对分析控制系统的严格要求来说.发展新的控制系统开始之前的详细工作是重要的。控制系统有很多的影响因素。例如:控制系统的机械结构,人类的因素,功率,稳定性和行业规则。行业法规是第一要求,必须加以解决。像对破裂软管的保护和运转负荷的保护采取的措施是控制系统的许多要求。规则之后,稳定性是下一个最重要的要求。没有稳定性,不能使用控制系统。稳定性的确认,树立了控制系统的执行要求。起重机的机械结构和人类操作者决定了它们。移动液压起重机的结构是一个有非常低的固有频率的大型的灵活结构。为了预防震动,它必须保持控制系统的速度在正常的频率或者去发展能增加这个频率的控制系统。人类工作者也施加影响控制系统的限制。如果控制系统是太慢或者太快,那么人类操作者不可能对它合适的输入。最后,一旦规则被满足,稳定性被确定,性能达到正确的水平,控制系统的功率功效达到最优化。2.2当前控制系统的分析在新的控制系统设计之前最好分析当前的控制系统来发现它们的问题。目前控制系统主要是水压和遭受的三个主要的问题:1.不稳定性2.高成本3.无效率2.2.1不稳定性不稳定是一个严重的问题,因为它可以造成伤害人类的操作者或损坏的设备。当一个系统变得不稳定,这通常开始激烈的振荡。为了避免目前系统中的不稳定性,设计者采取牺牲某些功能,或者增加复杂性和成本是可取的。例如,图1中展示的起重机,它通过控制速度是可取的。但是由于起重机安全系统的要求,标准速度的控制是不稳定的。控制速度的增加要求更负责或者更多昂贵的机械系统。水压系统的参数,例如温度和荷载力量,也影响稳定性。一个系统调整参数的稳定可能对另一个参数不稳定。为了确保完整系统范围对稳定性,性能可能在某个参数范围的目标中牺牲掉。2.2.2高成本目前系统是纯粹的液压机械,所以使用者想要某一功能,那么使用者要买一个液压机械组件。因为大多数的用户有不同的要求,相同的基本组成就有许多不同的版本。这意味着,许多专门组成部分必须制造出不是一个标准的产品。这使构成的成本上升。2.2.3无效率由于在气缸两个端口之间的连接物流动,在目前系统中存在一种低效率形式。这是因为大多数阀门使用一个单一的后台控制流在两个端口。因为这个环节,这是不可能设置的压力水平在气缸独立的两边。因此,出口方将制定一个回压力的行为,在反方向行进,从而增加维持运动进口边的要求压力。由制动装置产生的力量是与两边之间不同的压力成比例,气缸的实际压力是不影响气缸的动作。例如,气缸的动作压力是0psi/600 psi ,与1000psi/1600psi是相同的。然而,在第二种情况下,电力供应将不得不供应更多的电力。这额外的电力是浪费。2.3不同选择的控制系统目前的控制系统使用的液压致动器与定向/比例阀控制运动。不过有很多不同的选项控制气缸。选择范围从新型高性能电-液压阀,来单独的输入仪表/单独的输出仪表(SMISMO)的阀门,液压总线系统,智能驱动器内置在电源供应器,泵基于控制策略。这些系统都有优点和缺点,需要加以分析,如果最优化的解决办法是选择。2.4不久的将来解决方案可以预料,即使是证明,一个完全新系统的拓扑结构是最优配置中,起重机的制造商和部件制造商将不会接受持续一夜的新科技。这将最有可能需要一定的时间,使一个临时解决办法,将得到开发。这个解决方案将由微型电脑控制的单独的输入仪表/单独的输出仪表(SMISMO)的阀门(Elfving, Palmberg 1997; Jansson, Palmberg, 1990; Mattila,Virvalo 1997)SMISMO阀门,将使得有可能实施新的控制策略是更有效率和更稳定。该微型电脑将使得有可能引入的灵活性阀门。变值可以编程软件。这消除了需要制造数百种不同的变值。起
温馨提示:
1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
2: 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
3.本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
提示  人人文库网所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
关于本文
本文标题:液压抓斗式矿井水仓清淤机设计【11张CAD图纸+毕业论文】
链接地址:https://www.renrendoc.com/p-422372.html

官方联系方式

2:不支持迅雷下载,请使用浏览器下载   
3:不支持QQ浏览器下载,请用其他浏览器   
4:下载后的文档和图纸-无水印   
5:文档经过压缩,下载后原文更清晰   
关于我们 - 网站声明 - 网站地图 - 资源地图 - 友情链接 - 网站客服 - 联系我们

网站客服QQ:2881952447     

copyright@ 2020-2025  renrendoc.com 人人文库版权所有   联系电话:400-852-1180

备案号:蜀ICP备2022000484号-2       经营许可证: 川B2-20220663       公网安备川公网安备: 51019002004831号

本站为文档C2C交易模式,即用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知人人文库网,我们立即给予删除!