人工智能利用BP网络对26个字母进行识别.docx_第1页
人工智能利用BP网络对26个字母进行识别.docx_第2页
人工智能利用BP网络对26个字母进行识别.docx_第3页
人工智能利用BP网络对26个字母进行识别.docx_第4页
免费预览已结束,剩余1页可下载查看

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

人工智能利用BP网络对26个字母进行识别(matlab) clear;%清除工作区中的变量alphabet,targets = prprob;%通过prprob函数得到训练字母集和目标集R,Q = size(alphabet);%取得字母集的维数S2,Q = size(targets);%取得目标集的维数,在这里目标集是26个二进制数。分别代表AZS1 = 10;%隐含层个数net = newff(minmax(alphabet),S1 S2,logsig logsig,traingdx);%创建神经网络,两层,函数为Logsig。net.LW2,1 = net.LW2,1*0.01;%设定权值net.b2 = net.b2*0.01;%设定偏差向量net.performFcn = sse; %运用和平方最小误差方式net.trainParam.goal = 0.1;%训练精度目标为0.1 net.trainParam.epochs = 5000; %迭代5000次net.trainParam.mc = 0.95; %冲量为0.95P = alphabet;%训练集T = targets;%目标集net,tr = train(net,P,T);%训练网络netn = net;%创建带有噪声的网络netn.trainParam.goal = 0.6; %训练精度目标为0.6 netn.trainParam.epochs = 300; %迭代300次T = targets targets targets targets;%扩展目标集for pass = 1:10 fprintf(Pass = %.0fn,pass); P = alphabet, alphabet, . (alphabet + randn(R,Q)*0.1), . (alphabet + randn(R,Q)*0.2);%将训练集加入噪声 netn,tr = train(netn,P,T);%训练带有噪声的神经网络endnetn.trainParam.goal = 0.1; %训练精度目标为0.1 netn.trainParam.epochs = 500; %迭代500次P = alphabet;%重设训练集T = targets;%重设目标集netn,tr = train(netn,P,T);%训练代有噪声的神经网络noise_range = 0:.05:.5;%设定噪声max_test = 100;network1 = ;network2 = ;T = targets;%设定目标集for noiselevel = noise_range fprintf(Testing networks with noise level of %.2f.n,noiselevel); errors1 = 0; errors2 = 0; for i=1:max_test P = alphabet + randn(35,26)*noiselevel;%仿真集加入噪声 A = sim(net,P);%对用无噪声训练的网络进行仿真 AA = compet(A);%输出为1的那个对应输入向量为竞争获胜的输入向量 errors1 = errors1 + sum(sum(abs(AA-T)/2;%计算误差 An = sim(netn,P);%对用有噪声训练的网络进行仿真 AAn = compet(An);%输出为1的那个对应输入向量为竞争获胜的输入向量 errors2 = errors2 + sum(sum(abs(AAn-T)/ 2;%计算误差 end network1 = network1 errors1/26/100;%计算出Network1的误差 network2 = network2 errors2/26/100;%计算出Network2的误差endplot(noise_range,network1*100,-,noise_range,network2*100,*);%打出效果图title(误差百分数);xlabel(噪声水平);ylabel(Network 1 - - Network 2 *);noisyF=alphabet(:,6)+randn(35,1)*0.2;plotchar(noisyF)A1= sim(net,noisyF);plotchar(noisyF) ; plotchar(noisyF) ;figure;A = sim(net,P); A1= sim(net,noisyF); A1=compet(A2); A1=compet(A1); plotchar(noisyF);figure;A2= sim(netn,noisyF); A2=compet(A2); plotchar(noisyF); figure plotchar(A2)figure plotchar(A1);TRAINGDX, Epoch 0/5000, SSE 168.447/0.1, Gradient 46.0382/1e-006TRAINGDX, Epoch 25/5000, SSE 24.9713/0.1, Gradient 0.563004/1e-006TRAINGDX, Epoch 50/5000, SSE 25.4485/0.1, Gradient 0.363459/1e-006TRAINGDX, Epoch 75/5000, SSE 25.532/0.1, Gradient 0.333604/1e-006TRAINGDX, Epoch 100/5000, SSE 25.4204/0.1, Gradient 0.407/1e-006TRAINGDX, Epoch 125/5000, SSE 24.5179/0.1, Gradient 0.590354/1e-006TRAINGDX, Epoch 150/5000, SSE 20.1153/0.1, Gradient 1.03697/1e-006TRAINGDX, Epoch 175/5000, SSE 3.3111/0.1, Gradient 0.741009/1e-006TRAINGDX, Epoch 199/5000, SSE 0.0903872/0.1, Gradient 0.0562929/1e-006TRAINGDX, Performance goal met.Pass = 1TRAINGDX, Epoch 0/300, SSE 4.38727/0.6, Gradient 3.91707/1e-006TRAINGDX, Epoch 25/300, SSE 2.34149/0.6, Gradient 1.61314/1e-006TRAINGDX, Epoch 50/300, SSE 1.66179/0.6, Gradient 0.87181/1e-006TRAINGDX, Epoch 75/300, SSE 0.860046/0.6, Gradient 0.390595/1e-006TRAINGDX, Epoch 89/300, SSE 0.595819/0.6, Gradient 0.201143/1e-006TRAINGDX, Performance goal met.Pass = 2TRAINGDX, Epoch 0/300, SSE 1.69802/0.6, Gradient 2.60629/1e-006TRAINGDX, Epoch 25/300, SSE 1.0446/0.6, Gradient 0.670983/1e-006TRAINGDX, Epoch 50/300, SSE 0.809773/0.6, Gradient 0.387906/1e-006TRAINGDX, Epoch 73/300, SSE 0.597462/0.6, Gradient 0.196257/1e-006TRAINGDX, Performance goal met.Pass = 3TRAINGDX, Epoch 0/300, SSE 1.84056/0.6, Gradient 3.45909/1e-006TRAINGDX, Epoch 25/300, SSE 1.03318/0.6, Gradient 0.911047/1e-006TRAINGDX, Epoch 50/300, SSE 0.706745/0.6, Gradient 0.415866/1e-006TRAINGDX, Epoch 60/300, SSE 0.599226/0.6, Gradient 0.295716/1e-006TRAINGDX, Performance goal met.Pass = 4TRAINGDX, Epoch 0/300, SSE 1.60648/0.6, Gradient 2.3488/1e-006TRAINGDX, Epoch 25/300, SSE 1.01923/0.6, Gradient 0.815083/1e-006TRAINGDX, Epoch 50/300, SSE 0.784938/0.6, Gradient 0.396484/1e-006TRAINGDX, Epoch 74/300, SSE 0.592602/0.6, Gradient 0.188876/1e-006TRAINGDX, Performance goal met.Pass = 5TRAINGDX, Epoch 0/300, SSE 3.77602/0.6, Gradient 4.17101/1e-006TRAINGDX, Epoch 25/300, SSE 1.53422/0.6, Gradient 2.16367/1e-006TRAINGDX, Epoch 50/300, SSE 0.825853/0.6, Gradient 0.63716/1e-006TRAINGDX, Epoch 71/300, SSE 0.594703/0.6, Gradient 0.226427/1e-006TRAINGDX, Performance goal met.Pass = 6TRAINGDX, Epoch 0/300, SSE 1.42439/0.6, Gradient 2.20268/1e-006TRAINGDX, Epoch 25/300, SSE 0.834845/0.6, Gradient 0.700766/1e-006TRAINGDX, Epoch 50/300, SSE 0.625815/0.6, Gradient 0.35906/1e-006TRAINGDX, Epoch 54/300, SSE 0.594342/0.6, Gradient 0.318662/1e-006TRAINGDX, Performance goal met.Pass = 7TRAINGDX, Epoch 0/300, SSE 2.09651/0.6, Gradient 3.81564/1e-006TRAINGDX, Epoch 25/300, SSE 0.897211/0.6, Gradient 1.60762/1e-006TRAINGDX, Epoch 49/300, SSE 0.597725/0.6, Gradient 0.519457/1e-006TRAINGDX, Performance goal met.Pass = 8TRAINGDX, Epoch 0/300, SSE 0.923138/0.6, Gradient 1.46303/1e-006TRAINGDX, Epoch 25/300, SSE 0.66187/0.6, Gradient 0.533742/1e-006TRAINGDX, Epoch 36/300, SSE 0.597901/0.6, Gradient 0.448717/1e-006TRAINGDX, Performance goal met.Pass = 9TRAINGDX, Epoch 0/300, SSE 3.00343/0.6, Gradient 2.66202/1e-006TRAINGDX, Epoch 25/300, SSE 1.97339/0.6, Gradient 1.36688/1e-006TRAINGDX, Epoch 50/300, SSE 1.05923/0.6, Gradient 0.830243/1e-006TRAINGDX, Epoch 75/300, SSE 0.612867/0.6, Gradient 0.277627/1e-006TRAINGDX, Epoch 76/300, SSE 0.599021/0.6, Gradient 0.247759/1e-006TRAINGDX, Performance goal met.Pass = 10TRAINGDX, Epoch 0/300, SSE 3.92135/0.6, Gradient 4.29976/1e-006TRAINGDX, Epoch 25/300, SSE 2.54259/0.6, Gradient 1.46508/1e-006TRAINGDX, Epoch 50/300, SSE 1.95622/0.6, Gradient 0.593645/1e-006TRAINGDX, Epoch 75/300, SSE 1.54477/0.6, Gradient 0.266081/1e-006TRAINGDX, Epoch 100/300, SSE 1.32874/0.6, Gradient 0.103221/1e-006TRAINGDX, Epoch 125/300, SSE 1.18632/0.6, Gradient 0.0412091/1e-006TRAINGDX, Epoch 150/300, SSE 1.00956/0.6, Gradient 1.05356/1e-006TRAINGDX, Epoch 160/300, SSE 0.348182/0.6, Gradient 0.958822/1e-006TRAINGDX, Performance goal met.TRAINGDX, Epoch 0/500, SSE 0.0340377/0.1, Gradi

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论