广东省高考数学第二轮复习 专题升级训练7 三角函数的图象与性质 理.doc_第1页
广东省高考数学第二轮复习 专题升级训练7 三角函数的图象与性质 理.doc_第2页
广东省高考数学第二轮复习 专题升级训练7 三角函数的图象与性质 理.doc_第3页
广东省高考数学第二轮复习 专题升级训练7 三角函数的图象与性质 理.doc_第4页
免费预览已结束,剩余1页可下载查看

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

专题升级训练7三角函数的图象与性质(时间:60分钟满分:100分)一、选择题(本大题共6小题,每小题6分,共36分)1已知函数f(x)sin(xr),下面结论错误的是()a函数f(x)的最小正周期为2b函数f(x)在区间上是增函数c函数f(x)的图象关于直线x0对称d函数f(x)是奇函数2已知函数f(x)sin(0)的最小正周期为,则该函数的图象()a关于点对称 b关于直线x对称c关于点对称 d关于直线x对称3已知角的终边过点p(x,3),且cos ,则sin 的值为()a b.c或1 d或4要得到函数ysin 2x的图象,只需将函数ysin的图象()a向右平移个单位长度b向左平移个单位长度c向右平移个单位长度d向左平移个单位长度5下列关系式中正确的是()asin 11cos 10sin 168bsin 168sin 11cos 10csin 11sin 168cos 10dsin 168cos 10sin 116函数f(x)asin(x)(a0,0)的部分图象如图所示,则f(1)f(2)f(3)f(11)的值等于()a2 b2c22 d22二、填空题(本大题共3小题,每小题6分,共18分)7函数ysin x(0)的图象向左平移个单位后如图所示,则的值是_8函数ysin(1x)的递增区间为_9设函数f(x)2sin,若对任意xr,都有f(x1)f(x)f(x2)成立,则|x1x2|的最小值为_三、解答题(本大题共3小题,共46分解答应写出必要的文字说明、证明过程或演算步骤)10(本小题满分15分)已知函数ycos2xasin xa22a5有最大值2,试求实数a的值11.(本小题满分15分)已知函数f(x)sin.(1)求函数f(x)的最小正周期和单调递减区间;(2)在所给坐标系中画出函数f(x)在区间上的图象(只作图不写过程)12(本小题满分16分)已知定义在区间上的函数yf(x)的图象关于直线x对称,当x时,函数f(x)asin(x)的图象如图所示(1)求函数yf(x)在上的表达式;(2)求方程f(x)的解参考答案一、选择题1d解析:f(x)sincos x,a,b,c均正确,故错误的是d.2b解析:由t,得2,故f(x)sin,令2xk(kz),x(kz),故当k0时,该函数的图象关于直线x对称3c解析:角的终边过点p(x,3),cos ,解得x0或x27,sin 或1.4b解析:ysinsin 2,故要得到函数ysin 2x的图象,只需将函数ysin的图象向左平移个单位长度5c解析:sin 168sin(18012)sin 12,cos 10cos(9080)sin 80,由于正弦函数ysin x在区间0,90上为递增函数,因此sin 11sin 12sin 80,即sin 11sin 168cos 10.6c解析:由图象可知f(x)2sinx,且周期为8,f(1)f(2)f(3)f(11)f(1)f(2)f(3)2sin2sin2sin22.二、填空题72解析:由题中图象可知t,t,2.8.(kz)解析:ysin(x1),令2kx12k(kz),解得x(kz)92解析:若对任意xr,都有f(x1)f(x)f(x2)成立,则f(x1)f(x)min且f(x2)f(x)max,当且仅当f(x1)f(x)min,f(x2)f(x)max,|x1x2|的最小值为f(x)2sin的半个周期,即|x1x2|min2.三、解答题10解:ysin2xasin xa22a6,令sin xt,t1,1yt2ata22a6,对称轴为t,当1,即a2时,1,1是函数y的递减区间,ymaxa2a52,得a2a30,a,与a2矛盾;当1,即a2时,1,1是函数y的递增区间,ymaxa23a52,得a23a30,a,而a2,即a;当11,即2a2时,ymaxa22a62,得3a28a160,a4或a,而2a2,即a;a或a.11解:(1)t.令2k2x2k,kz,则2k2x2k,kz,得kxk,kz,函数f(x)的单调递减区间为,kz.(2)列表:2x2xf(x)sin00描点连线得图象如图:12解:(1)当x时,a1,t2,1.且f(x)sin(x)的图象过点,则,.故f(x)sin.当x时,x,fsin,而函数yf(x)的图象关于直线x对称

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论