2010高考数学专题讲座函数与方程的思想方法.doc_第1页
2010高考数学专题讲座函数与方程的思想方法.doc_第2页
2010高考数学专题讲座函数与方程的思想方法.doc_第3页
2010高考数学专题讲座函数与方程的思想方法.doc_第4页
2010高考数学专题讲座函数与方程的思想方法.doc_第5页
已阅读5页,还剩6页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

高考数学专题突破:函数与方程思想一知识探究:函数与方程是两个不同的概念,但它们之间有着密切的联系,方程f(x)0的解就是函数yf(x)的图像与x轴的交点的横坐标,函数yf(x)也可以看作二元方程f(x)y0通过方程进行研究。就中学数学而言,函数思想在解题中的应用主要表现在两个方面:一是借助有关初等函数的性质,解有关求值、解(证)不等式、解方程以及讨论参数的取值范围等问题:二是在问题的研究中,通过建立函数关系式或构造中间函数,把所研究的问题转化为讨论函数的有关性质,达到化难为易,化繁为简的目的。许多有关方程的问题可以用函数的方法解决,反之,许多函数问题也可以用方程的方法来解决。函数与方程的思想是中学数学的基本思想,也是历年高考的重点。1函数的思想,是用运动和变化的观点,分析和研究数学中的数量关系,建立函数关系或构造函数,运用函数的图像和性质去分析问题、转化问题,从而使问题获得解决。函数思想是对函数概念的本质认识,用于指导解题就是善于利用函数知识或函数观点观察、分析和解决问题;2方程的思想,就是分析数学问题中变量间的等量关系,建立方程或方程组,或者构造方程,通过解方程或方程组,或者运用方程的性质去分析、转化问题,使问题获得解决。方程的数学是对方程概念的本质认识,用于指导解题就是善于利用方程或方程组的观点观察处理问题。方程思想是动中求静,研究运动中的等量关系;3函数方程思想的几种重要形式(1)函数和方程是密切相关的,对于函数yf(x),当y0时,就转化为方程f(x)0,也可以把函数式yf(x)看做二元方程yf(x)0。函数问题(例如求反函数,求函数的值域等)可以转化为方程问题来求解,方程问题也可以转化为函数问题来求解,如解方程f(x)0,就是求函数yf(x)的零点;(2)函数与不等式也可以相互转化,对于函数yf(x),当y0时,就转化为不等式f(x)0,借助于函数图像与性质解决有关问题,而研究函数的性质,也离不开解不等式;(3)数列的通项或前n项和是自变量为正整数的函数,用函数的观点处理数列问题十分重要;(4)函数f(x)(nN*)与二项式定理是密切相关的,利用这个函数用赋值法和比较系数法可以解决很多二项式定理的问题;(5)解析几何中的许多问题,例如直线和二次曲线的位置关系问题,需要通过解二元方程组才能解决,涉及到二次方程与二次函数的有关理论;(6)立体几何中有关线段、角、面积、体积的计算,经常需要运用布列方程或建立函数表达式的方法加以解决。二命题趋势纵观近几年的高考试题,函数的主干知识、知识的综合应用以及函数与方程思想等数学思想方法的考查,一直是高考的重点内容之一。在高考试卷上,与函数相关的试题所占比例始终在20%左右,且试题中既有灵活多变的客观性试题,又有一定能力要求的主观性试题。函数与方程思想是最重要的一种数学思想,高考中所占比重比较大,综合知识多、题型多、应用技巧多。在高中新课标数学中,还安排了函数与方程这一节内容,可见其重要所在。在近几年的高考中,函数思想主要用于求变量的取值范围、解不等式等,方程观点的应用可分为逐步提高的四个层次:(1)解方程;(2)含参数方程讨论;(3)转化为对方程的研究,如直线与圆、圆锥曲线的位置关系,函数的性质,集合关系;(4)构造方程求解。三例题点评题型1:一.函数思想在方程中应用例1(1)已知(a、b、cR),则有( )(A) (B) (C) (D) 解析:法一:依题设有 a5bc0,是实系数一元二次方程的一个实根;0 故选(B);法二:去分母,移项,两边平方得:10ac25ac20ac, 故选(B)变式:1.设方程上有实根,求的取值范围。分析:本题若直接由条件出发,利用实根分布条件求出a,b满足的条件,视为区域内点与原点距离的平方,以此数形结合,亦可获解,但过程繁琐。考虑到变量a,b是主变量,反客为主,视方程为aob坐标平面上的一条直线l:,P(a,b)为直线上的点,则即为|PO|2,设d为点O到直线l的距离,由几何条件知:, 因为,令,则。 且易知函数在上为增函数。 所以。即。x21y0点评:解法一通过简单转化,敏锐地抓住了数与式的特点,运用方程的思想使问题得到解决;解法二转化为b2是a、c的函数,运用重要不等式,思路清晰,水到渠成。2. 已知函数 的图象如下,则( )(A) (B)(C) (D)答案:A. 二.构造函数或方程解决有关问题:例2 已知,t,8,对于f(t)值域内的所有实数m,不等式恒成立,求x的取值范围。解析t,8,f(t),3原题转化为:0恒成立,为m的一次函数(这里思维的转化很重要)当x2时,不等式不成立。x2。令g(m),m,3问题转化为g(m)在m,3上恒对于0,则:;解得:x2或xbc,且abc=0,抛物线被x轴截得的弦长为l,求证:分析:由于弦长l是与a,b,c有关的变量,若能建立的表达式,那么结论相当于确定该函数的值域为了确定函数的值域,需要解决好三个问题:一是求出变量l关于a,b,c的解析式;二是将这个多元函数通过集中变量、消元或变量代换转化为一元函数;三是需要确定这个一元函数的定义域证明:,且从而故抛物线与x轴有两个不同的交点,即方程必有两个不相等的实数根,由韦达定理得可见,是的二次函数由及,得,解得在上是减函,即点评:应用函数与方程思想处理不等式问题,关键在于构造一个适当的函数和用好方程理论,弄清函数、方程及不等式的内在联系,树立相互转化的观点变式:(2007年山东文15)当时,不等式恒成立,则的取值范围是 ;解析:构造函数:。由于当时,不等式恒成立。则,即。解得:。题型3:函数思想在数列中的应用例4设等差数列an的前n项和为Sn,已知,0,0,0,d3(2),d0,是关于n 的二次函数,对称轴方程为:x。d3,6,当n6时,最大。点评:数列的通项或前n项和是自变量为正整数的函数,用函数的观点处理数列问题十分重要。例4已知等差数列的公差,对任意都有,函数(1)求证:对任意,函数的图象过一定点(2)若,函数f(x)与x轴的一个交点为(),且,求数列的通项公式(3)在(2)的条件下,求分析:函数f(x)的图象过一定点,可运用等差数列的性质进行论证;后一问中可运用根与系数的特点进行求解解:(1)为等差数列,故,故必是方程的一个根,即方程均有一个相同的根为1故函数f(x)过一定点(1,0)(2)方程的两根为与有,故,(3),故点评:数列综合题往往和函数、方程、不等式相结合,以数列为载体,利用函数性质研究数列与方程,或以数列为载体,利用方程为工具去研究相关函数或数列的性质拓展:方程思想在数列知识中的应用例9若(zx) 4(xy)(yz)0,求证:x、y、z成等差数列。分析:题设正好是判别式b4ac0的形式,因此构造一个一元二次方程求解。证明:当xy时,可得xz,x、y、z成等差数列;当xy时,设方程(xy)t(zx)t(yz)0,由0得tt,并易知t1是方程的根。tt1,即2yxz,x、y、z成等差数列。点评:题设条件具备或经变形整理后具备xxa、xxb的形式,则利用根与系数的关系构造方程;具备b4ac0或b4ac0的形式,可利用根的判别式构造一元二次方程。题型5:函数思想在立体几何中的应用例5(1)如图,AB是圆O的直径,PA垂直于圆O所在平面,C是圆周上任一点,设BAC,PA =AB =2r,求异面直线PB和AC的距离。分析:异面直线PB和AC的距离可看成求直线PB上任意一点到AC的距离的最小值,从而设定变量,建立目标函数而求函数最小值。 P MA H B D C解析:在PB上任取一点M,作MDAC于D,MHAB于H,设MHx,则MH平面ABC,ACHD,MDx(2rx)sin(sin1)x4rsinx4rsin(sin1)x即当x时,MD取最小值为两异面直线的距离。点评:本题巧在将立体几何中“异面直线的距离”变成“求异面直线上两点之间距离的最小值”,并设立合适的变量将问题变成代数中的“函数问题”。一般地,对于求最大值、最小值的实际问题,先将文字说明转化成数学语言后,再建立数学模型和函数关系式,然后利用函数性质、重要不等式和有关知识进行解答。(2)已知由长方体的一个顶点出发的三条棱长之和为1,表面积为,求长方体的体积的最值。解析:设三条棱长分别为x,y,z,则长方体的体积Vxyz。由题设有:; 所以, 故体积V(x), 下面求x的取值范围。 因为, 所以y、z是方程的两个实根。 由, 因为 所以当时,;当时,。点评:解决本题的关键在于确定目标函数时,根据相关条件的特征,构造了二次方程,并由此得出定义域使问题得解。例10如图,已知面,于D,(1)令,试把表示为x的函数,并求其最大值;(2)在直线PA上是否存在一点Q,使成立?分析:(1)为寻求与x的关系,首先可以将转化为(2)由正切函数的单调性可知:点Q的存在性等价于:是否存在点Q使得解:(1)面,于D,为在面上的射影,即即的最大值为,等号当且仅当时取得(2)令,解得:,与交集非空满足条件的点Q存在点评:本题将立体几何与代数融为一体,不仅要求有一定的空间想象力,而且,做好问题的转化是解决此题的关键题型6:利用方程思想处理解析几何问题例6(1)直线与圆相切,则a的值为( )AB C1D解析:由直线方程得,并代入圆方程,整理得。又直线与圆相切,应有,解得。故选D。点评:即把直线方程代入圆或圆锥曲线的方程,消去y,得关于x的一元二次方程,其判别式为,则有:(1)曲线C与直线相离;(2)曲线C与直线相切;(3)曲线C与直线相交。满解决。例8给定抛物线,F是C的焦点,过点F的直线l与C相交于A,B两点.(1)设l的斜率为1,求与的夹角的大小;(2)设,若,求l在y轴上的截距的变化范围.解:(1)C的焦点为F(1,0),直线l的斜率为1,所以l的方程为将代入方程,并整理得设则有所以夹角的大小为(2)由题设得即 由得, 联立、解得,依题意有又F(1,0),得直线l方程为当时,l在y轴上的截距为设,可知在4,9上是递减的,(或用导数,证明是减函数)直线l在y轴上截距的变化范围为点评:不少解析几何问题,其中某些元素处于运动变化之中,存在着相互联系、相互制约的量,它们之间往往构成函数关系;对于直线和曲线交点问题,经常要转化为方程问题,用方程的理论加以解决例9直线和双曲线的左支交于A、B两点,直线l过点P(2,0)和线段AB的中点M,求l在y轴上的截距b的取值范围分析:b的变化是由于k的变化而引起的,即对于k的任一确定的值,b有确定的值与之对应,因此b是k的函数,本题即为求这个函数的值域解:由消去y,得()因为直线m与双曲线的左支有两个交点,所以方程()有两个不相等的负实数根所以解得设,则由三点共线,得出设,则在上为减函数,且,或,或点评:根据函数的思想建立b与k的函数关系,根据方程的思想,运用二次方程的理论具体求出b的表达式,是解此题的两个关键问题不少解析几何问题,其中某些元素处于运动变化之中,存在着相互联系、相互制约的量,它们之间往往构成函数关系;对于直线和曲线交点问题,经常要转化为方程问题,用方程的理论加以解决题型7:函数思想在三角中的应用例7(1)求的取值范围。解析:设,则,构造二次函数, 由图1可知:即。(2)已知函数,当有实数解时,求a的取值范围。解析:由得,分离a得:;问题转化为求a的值域。因为,所以。故当时,有实数解。点评:该题通过三角换元构造了二次函数,最终求得最值。例7已知函数f(x)=x2(m1)xm(mR)(1)若tanA,tanB是方程f(x)4=0的两个实根,A、B是锐角三角形ABC的两个内角.求证:m5;(2)对任意实数,恒有f(2cos)0,证明m3;(3)在(2)的条件下,若函数f(sin)的最大值是8,求m分析:利用一元二次方程的韦达定理、二次函数在区间上的最值的求法,三角函数的值域进行求解解题时要深挖题意,做到题意条件都明确,隐性条件注意列列式要周到,不遗漏(1)证明:f(x)4=0即x2(m1)xm4=0依题意:又A、B锐角为三角形内两内角,ABtan(AB)0,即m5(2)证明:f(x)=(x1)(xm),又1cos1,12cos3,恒有f(2cos)0即1x3时,恒有f(x)0即(x1)(xm)0,mx但xmax=3,mxmax=3(3)解:f(sin)=sin2(m1)sinm=,且2,当sin=1时,f(sin)有最大值8即1(m1)m=8,m=3点评:在解答过程中,第(1)问中易漏掉0和tan(AB)0,第(2)问中如何保证f(x)在1,3上恒小于等于零为关键(2)ABC的三边a,b,c满足b8c,试确定ABC的形状。 解析:因为bc8,所以b,c是方程的两实根, 即,所以a6。从而得bc4,因此ABC是等腰三角形。点评:构建一元二次方程的模型解决数学问题,是一种行之有效的手段,其独特功能在于充分运用构建的一元二次方程及根的判别式和求根公式变更命题,从而使问题获得圆题型8:方程思想在求函数最值中的应用例8(1)如果函数的最大值是4,最小值是1,求实数a、b的值。 解析:由y的最大值是4,知存在实数x使4,即方程有实根,故有; 又由y的最大值是4,知对任意实数x恒有,即恒成立,故,从而有。 同样由y的最小值是1,可得。由,可解得。(2)已知函数y的最大值为7,最小值为1,求此函数式。解析:函数式变形为: (ym)x4x(yn)0,xR,由已知得ym0, (4)4(ym)(yn)0。即:y(mn)y(mn12)0 ,不等式的解集为(1,7),则。解得:或 y(也可: 由解集(1,7)而设(y1)(y7)0,然后与不等式比较系数而得。)点评:本例解法中,对题设中给出的最值,一方面认为是方程的实数解,另一方面又认为是不等式的恒成立条件。由于对题设条件的理解深刻,所以构思新颖,证法严谨。题型11:函数零点与方程的解例11(1)(2007年山东文11)设函数与的图象的交点为,则所在的区间是( )ABCD答案:B;令,可求得:。易知函数的零点所在区间为。点评:本题主要考察学生对方程的根与函数零点关系的理解,以及利用函数图象确定函数零点的个数的方法。(2)已知函数,则方程在(,)内有没有实数解?说明理由?解析:由基本初等函数的性质可知函数在其定义域内的图象连续,且有,于是有。函数在区间(,)内至少有一个零点,即方程在区间(,)(,1)内至少有一个实数解点评:本题主要考察学生对函数零点存

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论