




已阅读5页,还剩10页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
专题九 直线与圆【考点聚焦】考点1:直线的方程.考点2:两条直线的位置关系.考点3:线性规划的实际应用.考点4:曲线和方程.考点5:圆的方程.考点6:直线与圆的位置关系.考点7:有向线段、定比分点、对称问题.【自我检测】1、 叫做直线l的倾斜角.2、 斜率k=_=_.3、 直线方程的点斜式:斜截式:;两点式;截距式:;一般式:.4、 叫做圆.5、 圆的标准方程:,圆心坐标为,半径为.6、 直线l1、l2的方程分别为y=k1x+b1和y=k2x+b2,(1)l1l2;(2)l1l2;若直线方程为一般式呢?7、 直线与圆的位置关系有、.【重点难点热点】问题1:求直线方程.常用待定系数法,即根据已知条件,首先确定采用直线方程的形式,然后确定其中相关的待定常数,如斜率、截距等.例1已知直线l经过点P(2,1),且直线l:x-2y+4=0的夹角为,求直线l的方程.思路分析:在l的斜率存在的前提下,可采用点斜式方程,若l的斜率不存在,则可直接写出方程.解:若直线l的斜率存在,设其为k,则 这时直线l的方程为3x+4y-11=0.若直线l的斜率不存在,其方程为x=1,经过验证,这时它与l的夹角为.因此,直线l的方程为3x+4y-11=0或x=1.点评:涉及用点斜式求直线方程的问题,一定要注意其斜是否存在;用截距式求方程时要讨论直线是否过原点.演变1:已知等腰直角三角形ABC中,C90,直角边BC在直线2+3y-6=0上,顶点A的坐标是(5,4),求边AB和AC所在的直线方程点拨与提示:利用等腰直角三角形的性质,得出ABC45,再利用夹角公式,求得直线AB的斜率,进而求得了直线AB的方程问题2:两直线的位置关系利用两条直线平行或垂直的条件判定它们平行或垂直,由直线到直线的角和夹角公式求直线到直线的角和夹角.例2:没a,b,c分别是ABC中角A,B,C的对边的边长,则直线xsinA+ay+c=0与直线bxysinB+sinC=0的位置关系是()A平行B重合C垂直D相交但不垂直思路分析:显然已知的两条直线的斜率都存在,所以可以从它们的斜率的联系上来推断.解法1:由已知,两直线的斜率分别为,.由正弦定理知:.两直线垂直,故应选C解法2:直线A1x+B1y+C1=0和A2x+B2y+C2=0垂直的充要条件是A1A2+B1B2=0,而bsinA+a(-sinB)=0,所以两直线垂直.故选C.点评:当两条直线l1、l2的方程分别为y=k1x+b1和y=k2x+b2(即它们的斜率都存在时),可由k1,k2这间的具体值来判断它们的位置关系以及求夹角;当l1、l2的方程分别为A1x+B1y+C1=0和A2x+B2y+C2=0时,可由l1l2 A1A2+B1B2=0来判断它们是否垂直.演变1:在ABC中,BC边上的高所在的直线方程是x2y+1=0,A的平分线所在的直线方程为y=0,若点B的坐标为(1,2),求点A和点C的坐标.点拨与提示:根据条件分析出图形,利用数形结合求解,是解决此题的关健.问题3:线性规划及应用准确找出及表示出已知条件下的线性约束条件及目标函数,利用线性约束条件所表示的平面区域,找出最优解,求出目标函数的最值.例3:画出以A(3,1)、B(1,1)、C(1,3)为顶点的ABC的区域(包括各边),写出该区域所表示的二元一次不等式组,并求以该区域为可行域的目标函数z=3x2y的最大值和最小值思路分析:本例含三个问题:画指定区域;写所画区域的代数表达式不等式组;求以所写不等式组为约束条件的给定目标函数的最值解:如图,连结点A、B、C,则直线AB、BC、CA所围成的区域为所求ABC区域直线AB的方程为x+2y1=0,BC及CA的直线方程分别为xy+2=0,2x+y5=0在ABC内取一点P(1,1),分别代入x+2y1,xy+2,2x+y5得x+2y10,xy+20,2x+y50)在交点处的切线互相垂直,则R=_14已知P(1,2)为圆x2+y2=9内一定点,过P作两条互相垂直的任意弦交圆于点B、C,则BC中点M的轨迹方程为_15方程ax2+ay24(a1)x+4y=0表示圆,求a的取值范围,并求出其中半径最小的圆的方程16一个圆的圆心在直线x-y-1=0上,与直线4x+3y+14=0相切,在3x+4y+10=0上截得弦长为6,求圆的方程17已知圆C: x2+y2-2x+4y-4=0,是否存在斜率为1的直线L,使以L被圆C截得弦AB为直径的圆经过原点?若存在,写出直线的方程;若不存在,说明理由18求圆C1: 与圆C2: 的公共弦所在直线被圆C3:所截得的弦长19(05年广东)在平面直角坐标系中,已知矩形的长为,宽为,、边分别在轴、轴的正半轴上,点与坐标原点重合(如图所示)将矩形折叠,使点落在线段上()若折痕所在直线的斜率为,试写出折痕所在直线的方程;()求折痕的长的最大值O(A)BCDXY参考答案:1解法一:x2+y24x=0, y=kxk+x24x+(kxk+)2=0该二次方程应有两相等实根,即=0,解得k=y=(x1),即xy+2=0解法二:点(1,)在圆x2+y24x=0上,点P为切点,从而圆心与P的连线应与切线垂直又圆心为(2,0),k=1解得k=,切线方程为xy+2=0答案:D2答案: A3答案: B4答案:A5答案:B解:由题意得=1,即c2=a2+b2,由a、b、c构成的三角形为直角三角形 6答案: A7答案:A解:由过一点有且只有一个平面与已知直线垂直,所以AC始终在与直线AB垂直的平面内,再由两平面有且只有一条交线,所以轨迹是一个直线.8答案:C解:由、的坐标位置知,所在的区域在第一象限,故.由得,它表示斜率为.(1)若,则要使z取得最小值,必须使最小,此时需,即1;(2)若,则要使z取得最小值,必须使最大,此时需,即2,与矛盾.综上可知,1.9答案:A解:由题意可知:直线沿轴向左平移1个单位后的直线为:.已知圆的圆心为,半径为.直线与圆相切,则圆心到直线的距离等于圆的半径,因而有,得或7.10.答案:B解:当时两直线斜率乘积为,从而可得两直线垂直,当时两直线一条斜率为0,一条斜率不存在,但两直线仍然垂直.因此是题目中给出的两条直线垂直的充分但不必要条件.11答案:(x2)2+(y+3)2=5解:圆C与y轴交于A(0,4),B(0,2),由垂径定理得圆心在y=3这条直线上又已知圆心在直线2xy7=0上,联立y=3,2xy7=0 解得x=2,圆心为(2,3),半径r=|AC|=所求圆C的方程为(x2)2+(y+3)2=512答案:13答案:3提示:用勾股定理推导出所求直线垂直于CP14答案:x2+y2x2y2=0解:RtOMC中,|MP|=|BC|(直角三角形斜边上的中线是斜边的一半)故所求轨迹方程为x2+y2x2y2=015解:(1)a0时,方程为x2+(y+)2=,由于a22a+20恒成立,a0且aR时方程表示圆(2)r2=4=42()2+,a=2时,rmin2=2此时圆的方程为(x1)2+(y1)2=216解:由圆心在直线x-y-1=0上,可设圆心为(a,a-1),半径为r,由题意可得 ,经计算得a=2,r=5所以所求圆的方程为(x-2)2+(y-1)2=2517解:设直线L的斜率为,且L的方程为y=x+b,则消元得方程x2+(2b+2)x+b2+4b-4=0,设此方程两根为x1,x2,则x1x2(b+1),y1+y2= x1x2+2b=b-1,则中点为,又弦长为,由题意可列式解得b=1或b=-9,经检验b=-9不合题意所以所求直线方程为y=x+118解: 圆C1与圆C2的公共弦所在直线方程为: 即x+y-1=0圆心C3到直线x+y-1=0的距离.所以所求弦长为.19.解(I) (1)当时,此时A点与D点重合, 折痕所在的直线方程(2)当时,将矩形折叠后A点落在线段CD上的点为G(a,1)所以A与G关于折痕所在的直线对称,有故G点坐标为,从而折痕所在的直线与OG的交点坐标(线段OG的中点)为,折痕所在的直线方程,即由(1)(2)得折痕所在的直线方程为:k=0时,;时(II)(1)当时,折痕的长为2;(1) 当时, 折痕所在的直线与坐标轴的交点坐标为令解得 所以折痕的长度的最大值2A60yxMQPO【挑战自我】如图,在直角坐标系xOy中,射线OA在第一象限内,且与x轴的正向成定角60,动点P在射线OA上运动,动点Q在y轴正半轴上运动.POQ的面积为定值.(1)求线段PQ的中点M的轨迹C的方程;(2)R1、R2是曲线C上的动点,R1、R2到y轴的距离之和为1,设u为R1、R2到x轴距离之积,是否存在最大的常数m,使um恒成立?如果存在,求出这个m的值,如果不存在,请说明理由.解:(1)依题意,射线OA的方程为y=,设M(x,y),P(t,)(t0),则Q点的坐标为(2x-t,2y-),即.又Q点在y轴上,2x-t=0,即t=2x,于是:x|y-|=.点P在AOQ的内部,y-0,且x0,y0.因此有,这就是M点的轨迹方程.(2)设R1(x1,y1),R2(x2,y2),则x1+x2=1,y1y2=uu=y1y2=3(=3x10,x20,x1+x2=1,0于是,,因此,当时,um恒成立,故m的最大值为.【答案及点拨】演变1:直线BC的斜率kBC,直线AC与直线BC垂直,直线AC的方程为y4(5)即32y70ABC45,kAB5或kABAB边所在的直线方程为:y4(5)或y45(5)即5y150或5y290 演变2:由A(1,0)又kAB=1, x轴是A的平分线, kAC=1,AC: y=(x+1), 又kBC=2, BC: y2=2(x1)由C(5,6)演变3:由题意知f(0)0,f(1)0,f(2)0b0,a+b+10,a+b+20如图所示 A(3,1)、B(2,0)、C(1,0)又由所要求的量的几何意义知,值域分别为(1)(,1);(2)(8,17);(3)(5,4)演变4: 已知圆方程化为: ,其圆心P(1,0),半径为1设所求圆的圆心为C(a,b),则半径为, 因为两圆外切, ,从而1+ (1)又所求圆与直线:相切于M(),直线,于是,即 (2)将(2)代入(1)化简,得a2-4a=0, a=0或a=4当a=0时,所求圆方程为当a=4时,b=0,所求圆方程为演变5:由已知可得圆C:关于x轴对称的圆C的方程为,其圆心C(2,-2),则与圆C相切,设: y-3=k(x+3), ,整理得12k2+ 25k+12=0, 解得或,所以所求直线方程为y-3= (x+3)或 y-3= (x+3),即 3x+4y-3=0或4x+3y+3=0演变6:(1)问题可转化为求圆上一点到原点连线的斜率的最大值, 由图形性质可知, 由原点向圆作切线,其中切线斜率的最大值即为的最大值设过原点的直线为y=kx,即kx-y=0,由,解得或(2)x,y满足, 另法:应用线性规划的思路,如图, 2x-y的最小值或最大值就在直线2x-yb与圆的切点处达到.由,解得或演变7:建立坐标系如图所示,设|AB|=2a,则A(a,0),B(a,0) 设M(x,y)是轨迹上任意一点 则由题设,得=,坐标代入,得=,化简得(12)x2+(12)y2+2a(1+2)x+(12)a2=0(1)当=1时,即|MA|=|MB|时,点M的轨迹方程是x=0,点M的轨迹是直线(y轴) (2)当1时,点M的轨迹方程是x2+y2+x+a2=0 点M的轨迹是以(,0)为圆心,为半径的圆
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 离婚协议书二十四字范本
- 门店入股协议书范本合同
- 自体免疫细胞储存协议书
- 甲方合同终止协议书范本
- 甲方违约部分赔偿协议书
- 电商合同转让协议书范本
- 机械合作伙伴合同协议书
- 煤场地合作协议合同范本
- 股东投资协议谁出具合同
- 销售生态护坡砖合同范本
- 16个露天煤矿事故案例
- 装修设计文件消防专篇
- 八年级物理浮力压强专题经典计算题(含答案解析)
- GB/T 3211-2008金属铬
- GB/T 12703.7-2010纺织品静电性能的评定第7部分:动态静电压
- ps6000自动化系统用户操作及问题处理培训
- 2023年韶关市法院书记员招聘笔试模拟试题及答案解析
- 革兰氏阴性菌课件
- 聘用证书合集通用PPT模板
- 建筑工程文件归档管理明细表
- 海姆立克手法理论知识、临床应用及注意事项考核试题与答案
评论
0/150
提交评论