




已阅读5页,还剩8页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
19.1.1变量与函数第一课时民族中学 刘喜1.了解常量与变量的含义,能分清实例中的常量与变量.2.学会用含一个变量的代数式表示另一个变量.经历观察、分析、思考等数学活动过程,发展合情推理,以提高分析问题和解决问题的能力.引导学生探索实际问题中的数量关系,渗透事物是运动的,运动是有规律的辩证思想,培养学生对学习的兴趣和积极参与数学活动的热情.教学重点、难点【重点】认识变量、常量,会用式子表示变量间的关系.【难点】用含有一个变量的式子表示另一个变量.教学准备 【教师准备】多媒体课件 【学生准备】预习教材内容教学过程一、新课导入导入一: 当我们用数学的眼光来分析现实世界的各种现象时,会遇到各种各样的量,如物体运动中的速度、时间和距离;圆的半径、周长和圆周率;购买商品的数量、单价和总价;某城市一天中各时刻变化着的气温等.在某一个过程中,有些量固定不变,有些量不断改变.为了更好地认识和了解这些变化现象中所隐含的变化规律,从本节课开始我们将学习这一部分知识.设计意图利用学生较熟悉的生活实例引入本课学习的内容,调动学生学习的积极性.导入二:视频展示:中国地盘的变化,据此引出今天学习的课题:变量与函数.设计意图由学生经历的事情提问题,能引起学生的好奇心.2、新知构建1.变量与常量的概念 问题1、视频加油表的变化问题2、汽车以90 km/h的速度匀速行驶,行驶时间为t h.填写表19-1,s的值随t的值的变化而变化吗?(出示教材表19-1)表19-1t/h12345s/km学生填表,并思考.1.根据题意填写下表:t/h12345s/km2.在以上这个过程中,变化的量是.不变化的量是.3.试用含t的式子表示s.教师引导学生交流:从题意中可以知道汽车是匀速行驶,那么它1 h行驶90 km,2 h行驶290 km,即180 km,3 h行驶390 km,即270 km,4 h行驶490 km,即360 km,5 h行驶590 km,即450 kmt/h12345s/km90180270360450因此其中行驶里程s与时间t是变化的量,速度60 km/h是不变的量.行驶里程s km与时间t h之间有关系:s=60t.s随t的增大而增大.设计意图挖掘和利用实际生活中与变量有关的问题情境,让学生经历探索具体情境中的变量与常量.问题3:一电影院每张电影票的售价为10元,如果早场售出票150张,日场售出200张,晚场售出300张,三场电影票的票房收入各多少元?学生分析问题,并同桌交流.1.电影票的售价为10元/张, 早场售出150张票,则第一场电影的票房收入为元; 日场售出200张票,则第二场电影的票房收入为元; 晚场售出30张票,则第三场电影的票房收入为元.2.设一场电影售票x张,票房收入y元,则用含x的式子表示y为.教师解析: 第一场电影的票房收入为15010=1500(元).第二场电影的票房收入为20010=2000(元).第三场电影的票房收入为30010=3000(元).用含x的式子表示y为y=10x, y随x的增大而增大.设计意图通过适当地把问题进行分解,引导学生通过合理、正确的思维方法探索出变化规律.问题4:如图所示,当圆的半径r分别为10 cm,20 cm,30 cm时,圆的面积S分别为多少?S的值随r的值的变化而变化吗?学生活动填表,并讨论.(1)填表:半径r(cm)102030圆面积S(cm2)(2) S与r之间满足下列关系:S=.教师解析:(1)半径r(cm)102030圆面积S(cm2)31412562826(2) S=r2.圆的半径越大,它的面积就越大.设计意图挖掘和利用实际生活中与变量有关的问题情境,让学生经历探索具体情境中两个变量关系的过程,直接获得探索变量关系的体验.问题5:用10 m长的绳子围成一个矩形,当矩形的一边长x分别为3 m,3.5 m,4 m,4.5 m时,它的邻边长y分别为多少?y的值随x的值的变化而变化吗?学生活动小组讨论后,教师进行解析:因为矩形两组对边相等,所以它的一边长与它的邻边长的和应是周长10 m的一半,即5 m.若矩形一边长为3 m,则它的邻边长为5-3=2(m).若矩形一边长为3.5 m,则它的邻边长为5-3.5=1.5(m).若矩形一边长为4 m,则它的邻边长为5-4=1(m).若矩形一边长为4.5 m,则它的邻边长为5-4.5=0.5(m).若矩形一边长为x m,则它的邻边长为y=5-x(m),y随x的增大而减小.设计意图在本环节中,设计了问题情境,目的是让学生在现实情境中感知变量和常量的存在和意义,体会变量之间的互相依存关系和变化规律.此外,希望通过这几个问题引出常量、变量的概念,使学生体验从具体到抽象的认识过程. 这些问题反映了不同事物的变化过程,涉及多个量,你能将这些问题中出现的量按照某种标准进行分类吗?学生分组讨论,交流自己的看法.按照有无变化,我们发现其中有些量(例如时间t,路程s;售出票数x,票房收入y)的值是变化的,有些量的值始终不变(例如速度60 km/h;电影票的单价10元),因此可分为两类.师生共同总结出变量和常量的定义并板书.变量和常量的定义:在某个变化过程中,我们称数值发生变化的量为变量;数值始终不变的量叫做常量.设计意图通过上述的五个问题进行具体的讲评,借助实例来理解变量、常量的概念,在讲解概念后强调常量与变量的区别与联系,使学生进一步理解、领会有关常量和变量的概念.2.认识新知 在学习与生活中,经常要研究一些数量关系,先看下面的问题.问题(1):(1) 下图是某城市的海滨浴场波浪的浪高与时间的变化曲线图。这一问题中涉及哪几个量? 它们变化吗?学生结合图,说出每一时刻所对应的温度值,教师进行确认。(2) 下表是声音在空气中传播的速度与气温的变化关系表学生讨论、举例,在上述实例的解决过程中,体会在一个变化过程中各个量的变化规律,进而发现有的量变化、有的量不变.教师引导学生概括:在上面的问题中,我们研究了一些数量关系,出现了各种各样的量,有些量,它们始终保持不变,我们称之为常量,而有些量,在某一变化过程中,可以取不同数值,我们称之为变量.设计意图在本环节中,设计了问题情境,并让学生举出生活中类似的例子,目的是让学生在现实情境中感知变量和常量的存在和意义,体会变量之间的互相依存关系和变化规律.此外,希望通过这几个问题引出常量、变量的概念,使学生体验从具体到抽象的认识过程.知识拓展(1)常量与变量是相对而言的,是相对某个变化过程来说的,换句话说,在这个变化过程中是变量,而在另一个变化过程中有可能以常量身份出现.如s=vt中,若v=20,此式子为s=20t,可见s,t为变量,若t=10,此式子为s=10v,s,v为变量,变量与常量的身份可以相互转化.(2)判断一个量是常量还是变量关键是看这个量所在的变化过程中,该量的值是否发生变化.(3)常数也叫常量,如S=r2,其中常量是.3.例题与练习(补充) 若球体体积为V,半径为R,则V=R3.其中变量是、,常量是.解析根据变量和常量的概念进行求解,解题时注意是一个常量.答案:VR(补充) 写出下列各问题中的关系式,并指出其中的常量与变量:(1)圆的周长C与半径r的关系式;(2)火车以60千米/时的速度行驶,它驶过的路程s(千米)和所用时间t(小时)的关系式.解析先根据实际问题确定所给问题的关系式,再根据变量和常量的概念进行求解.解:(1)C=2r,2是常量,r,C是变量.(2)s=60t,60是常量,t,s是变量.设计意图通过上述几个问题进行具体的讲评,借助实例来理解变量、常量的概念.随堂练习1、计划购买50元的乒乓球,所能购买的总数n(个)与单价 a(元)的关系式为 。其中的变量是 ,常量是 。2、某位教师为学生购买数学辅导书,书的单价是4元,则总金额y(元)与学生数n(个)的关系式是 。其中的变量是 。常是 。思考:如图所示,线段AB=a,D为AB上一点,射线DO AB,在射线DQ上任取一点C (不与点D重合),连结AC, BC,得到ABC,设DC的长度为h,ABC的面积是S,写出用h表示S的表达式本节课从现实问题出发,找出了寻求事物变化中变量之间变化规律的一般方法步骤.它对以后学习函数及建立函数关系式有很重要的意义.1.确定事物变化中的变量与常量.变量和常量的定义:在某个变化过程中,我们称数值发生变化的量为变量;数值始终不变的量叫做常量.2.尝试运算寻求变量间存在的规律.3.利用学过的有关知识公式确定关系式.设计意图通过小结、课堂训练和学生反思,进一步理顺学生的学习思路,加深对变量、常量有关概念的理解.板书设计19.1变量与函数(第1课时)1.变量与常量的概念:变量:在一个变化过程中,数值发生变化的量为变量.常量:在一个变化过程中,数值始终不变的量为常量.2.例题讲解:例1例2作业布置【必做题】习题19.1 1 、2【选做题】生活积累:找一些相关的变量有关的生活实例本节课以问题为载体、以学生为主体、以合作交流为手段、以能力提高为目的.在探究知识上,以学生自主探究分组交流为主线,发挥学生的主体作用.在课堂教学中选择贴近生活的实例,与变量和常量的概念紧密结合,能使课堂效果达到最佳状态.在某个变化过程中,变量和常量是相对而言的,学生理解较困难,解题时学生容易出现把看成变量这种错误.教学时通过对比教学多举出变量和常量是相对而言的事例,让学生真正理解变量和常量的概念.函数的起源函数的概念在17世纪已经引入,牛顿(Isaac Newton,16421727,英国科学家)的自然哲学的数学原理中提出的“生成量”就是雏形的函数概念.笛卡儿(R.名言:“我思故我在”)引入变量后,随之而来的便是函数的概念.他指出y和x是变量(“未知量和未定的量”)的时候,也注意到y依赖于x而变.这正是函数思想的萌芽,但是他没有使用“函数”这个词.最早把“函数”(function)这个词用作数学术语的数学家是莱布尼茨(Gottfried Wilhelm Leibniz,16461716,德国数学家),但其含义和现在不同,他把函数看成是“像曲线上点的横坐标、纵坐标、切线长度、垂线段长度等所有与曲线上的点有关的量”. 1718年,瑞士数学家约翰贝努利(John Bernoulli,16671748,欧拉的数学老师)将函数概念公式化,给出了函数的一个定义,同时第一次使用了“变量”这个词.他写到:“变量的函数就是变量和变量以任何方式组成的量”.他的学生,瑞士数学家欧拉(Leonard Euler,17071783,被称为历史上最“多产”的数学家)将约翰贝努利的思
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 购房者信用记录查询与报告协议
- 2025公务员税务面试题及答案
- 介绍绿色技术
- 2025至2030中国聚芳砜行业项目调研及市场前景预测评估报告
- 2025年智能可穿戴设备在飞行员睡眠监测中的技术创新应用
- 2025年智能可穿戴设备睡眠监测技术革新应用展望
- 2025至2030中国汽车节油技术行业产业运行态势及投资规划深度研究报告
- 2025至2030中国废旧电器行业项目调研及市场前景预测评估报告
- 消防安全教育课件
- 江苏纺织:达成纺织行业股权置换与产业升级框架协议
- 阿尔茨海默症的护理诊断与措施
- 辅导机构创业路演
- 2025年穿脱隔离衣的试题及答案
- 2025年移动初级解决方案经理认证理论考试指导题库-下(多选、判断题)
- 健身房卫生安全措施及服务质量提升方案
- DB14-T 1737-2024 医疗护理员培训机构服务规范
- 《混凝土砖块机:混凝土砖块机技术》课件
- 物业经理聘用合同
- 理想二语自我对交际意愿的影响:二语坚毅和自信的链式中介作用
- MPOWER及烟草控制框架公约及国际国内控烟进展
- 2023年建筑三类人员(B类)考试题库(浓缩500题)
评论
0/150
提交评论