齿轮轴.dwg
齿轮轴.dwg

立辊轧机主传动系统设计【5张图纸】【优秀】

收藏

压缩包内文档预览:
预览图
编号:423408    类型:共享资源    大小:575.02KB    格式:RAR    上传时间:2015-04-08 上传人:上*** IP属地:江苏
39
积分
关 键 词:
立辊轧机 主传动系统 设计 图纸 立辊轧机主传动
资源描述:

立辊轧机主传动系统设计

41页 13000字数+说明书+外文翻译+5张CAD图纸【详情如下】

外文翻译--辊缝润滑工作辊冷却及反剥系统在热轧钢机上的协调应用.doc

总装图.dwg

摘要.doc

立辊轧机主传动系统设计说明书.doc

轧辊装配图.dwg

轧辊零件图.dwg

轴.dwg

齿轮轴.dwg

目录

1.绪论 ……………………………………………………………………………………  1

1.1  选题背景及目的……………………………………………………………………  1

1.1.1选题背景……………………………………………………………………………  1

1.1.2选题目的……………………………………………………………………………  1

1.2  热轧宽带钢国内外发展状况………………………………………………………  1

1.2.1国外热轧宽带钢生产技术的发展史………………………………………………  1

1.2.2我国热轧宽带钢生产技术的进步…………………………………………………  2

2.立辊轧机简介 …………………………………………………………………………  4

2.1  立辊轧机的发展状况………………………………………………………………  4

2.1.1立辊轧机的发展……………………………………………………………………  4

2.1.2新型立辊轧机的使用情况…………………………………………………………  4

2.2  立辊轧机特点介绍…………………………………………………………………  4

2.2.1立辊轧机的特点……………………………………………………………………  4

2.2.2立辊轧机的作用……………………………………………………………………  5

2.2.3立辊轧机的分类……………………………………………………………………  5

2.2.4立辊轧机的组成……………………………………………………………………  5

3.总体方案的确定 ………………………………………………………………………  6

3.1  主传动系统…………………………………………………………………………  6

3.2  万向接轴……………………………………………………………………………  7

3.3  轧辊系统……………………………………………………………………………  7

3.4  轧辊轴承……………………………………………………………………………  8

3.5  侧压系统……………………………………………………………………………  9

4.立辊轧机力能参数的计算 …………………………………………………………… 10

4.1  立辊轧机轧制力计算……………………………………………………………… 10

4.1.1影响应力计算因素………………………………………………………………… 10

4.1.2应力计算…………………………………………………………………………… 12

4.1.3立辊轧机轧制力计算……………………………………………………………… 12

4.2  立辊轧机轧辊力矩计算…………………………………………………………… 12

4.3  轧机主电动机功率计算…………………………………………………………… 13

4.3.1轧机主电动机力矩计算…………………………………………………………… 13

4.3.2立辊轧机主电动机功率计算……………………………………………………… 14

5.主要零部件的校核计算………………………………………………………………  16

5.1  减速机的设计与校核计算………………………………………………………… 16

5.1.1齿轮的设计计算…………………………………………………………………… 16

5.1.2按齿根弯曲强度校核设计………………………………………………………… 18

5.1.3齿轮几何尺寸计算………………………………………………………………… 20

5.2  齿轮轴的校核计算………………………………………………………………… 21

5.2.1齿轮轴上载荷计算………………………………………………………………… 21

5.2.2按弯扭合成应力校核轴的强度…………………………………………………… 24

5.2.3根据轴的安全系数校核轴………………………………………………………… 24

5.3  轴承寿命验算……………………………………………………………………… 26

5.3.1轴承所受载荷计算………………………………………………………………… 26

5.3.2验算轴承寿命……………………………………………………………………… 28

5.4  轧辊校核…………………………………………………………………………… 29

5.4.1轧辊工作直径及辊身长度确定…………………………………………………… 29

5.4.2轧辊校核…………………………………………………………………………… 29

6.设备润滑 ……………………………………………………………………………… 34

结论……………………………………………………………………………………… 35

致谢……………………………………………………………………………………… 36

参考文献………………………………………………………………………………… 37

4.立辊轧机力能参数的计算

4.1 立辊轧机轧制力计算

4.1.1影响应力计算因素

轧机的基本参数:

             轧件材料Q235

             轧制温度1200oC

             轧制速度=6.5m/s

             轧辊直径D=1200mm

             轧制前轧件厚度mm

             轧制后轧件厚度mm

立辊轧机主传动系统设计

摘要

近年来立辊轧机相对于以往有了很大的改进,其在轧钢生产中使用越来越广泛,尤其是在热轧薄板带钢生产中的破鳞、控制板坯宽度等方面更是必不可少的轧钢设备。新型立辊轧机目前在我国受到很多钢铁公司的青睐,产生了显著的经济效益

   本次设计的主要目的是对立辊轧机设备的整体结构有进一步的了解,并对主要部件进行校核计算。在查阅大量文献和了解相关知识的同时,到鞍山钢铁集团公司热轧带钢厂1700及1780生产线进行了参观实习。经过一个月的实习,对立辊轧机的认识也由理性认识上升到了感性认识。

   本次设计包括热轧宽带钢的国内外发展、立辊轧机的发展、立辊轧机的简介、立辊轧机主传动系统的设计及主要力能参数的校核计算等内容。在大多数钢铁公司里立辊轧机都是采用下传动形式的,而本次设计的主要特色是将立辊轧机的传动形式设计成为上传动形式。

关键词:立辊轧机,主传动系统,力能参数计算

2.立辊轧机简介

2.1立辊轧机的发展状况

2.1.1立辊轧机的发展

   在热轧板、带车间,中厚板轧机上都附设有立辊轧机,最早于40年代用在万能式中厚板轧机上,50年代用于大型钢锭的轧边以消除锥度,60年代开始把立辊轧机用于齐边与破鳞,70年代连铸板坯迅速发展,而钢锭急剧减少,轧机生产能力重于成材率,曾提出过“立辊无用论”,80年代以来,热带钢连轧机组前及厚板轧机上附设立辊轧机开始多起来,主要用于平面板形控制,使成材率有所提高,一般可提高约1%~3%,尤以日本和韩国都推举此做法,目的是想生产出无切边钢板。

2.1.2新型立辊轧机的使用情况

   新型立辊轧机深受用户的欢迎。目前,已在吉林建龙钢铁有限公司、八家户钢铁公司、唐山国丰钢铁有限公司、唐山轧钢厂、唐山银丰钢铁有限公司、胜芳前进钢铁总厂、宁波全兴不锈钢制品有限公司、天津钢厂、津西钢厂等厂家使用,产生了显著的经济效益。

2.2立辊轧机特点介绍

2.2.1立辊轧机的特点

   独立的立辊轧机直接固定在地基上,万能轧机的立辊机座有的和水平的机座相连接,有的附设在水平辊机座侧。立辊轧制线与水平辊一致,同一机座的两立辊可相对于轧制线做对中调整,由侧压装置保证所需的开口度。

   在现代热带钢连轧机上,每一板坯只在破鳞机上轧一道。由于不与粗轧机形成连轧,因此立辊轧机主电动机一般采用同步交流电动机。而在某些半连续式轧机和钢板轧机上,大立辊轧机除了轧制窄坯的侧面取得破鳞效果外,根据轧制工艺要求,将窄坯横轧以得到宽展钢板。为了保证轧件宽展后的宽度均匀,需要用立辊进行侧边轧制,有时还同粗轧机形成连轧,因此这类立辊轧机往往采用直流电动机。

2.2.2立辊轧机的作用

   经过轧制消除钢锭的锥度;

   与高压水除鳞装置相配合除去轧件表面生成的氧化铁皮,提高钢板质量;

   通过侧压改善金属组织,减少轧材缺陷;

   与四辊轧机相配合进行轧边,减少切边量,提高收得率;

2.2.3立辊轧机的分类

   立辊轧机型式按轧制力、用途、传动方式、机架结构及布置位置之不同分成各种型式。

   按轧制力分为重型、中型及轻型3种;

   按用途分为轧边、齐边及破鳞3种;

   按传动方式分为上传动和下传动,也可分为单电机与双电机;

   按机架结构分为闭口式和开口式;

   按布置位置分,有主机前后之分,近接与非近接之分;

   按辊型分为平辊与形辊;

   按立辊支撑方式的不同,立辊轧机有悬臂式和框架式两种。

2.2.4立辊轧机的组成:

   立辊轧机通常由以下装置组成:

   主传动装置由主电机、主减速器和接轴等组成;

   侧压装置由侧压电机、减速器、接轴和机架辊等组成;

   立辊箱由箱体、立辊、轴承和轴承座等组成。在调整立辊开口度时,可作往复移动;

   机架用来装设立辊箱、侧压装置和机架辊道,并直接承受轧制力;

   机架辊由电动机、减速器、接轴和机架辊等组成;开口度指示装置由齿轮传动系统、调零装置、指示盘等组成。

内容简介:
附录A Coordinated Application of RollGap Lubrication, Work Roll Cooling and Antipeeling Systems in Hot Rolling MillsSurface quality requirements for hot rolled steel sheet have continued to become more stringent in recent years. This focus on sheet quality has developed in parallel with corresponding demands for increased productivity and reduced costs at the mill. Although not a panacea, roll gap lubrication systems have received increased attention in support of these objectives. Specifically, roll gap lubrication systems are used in combination with work roll cooling systems and antipeeling systems to:l Reduce rolling loads and thereby reduce potential for chatter.l Reduce rolling torques and associated energy requirements.l Enable redistribution of loads among stands to address chatter issues.l Increase reductions to decrease final strip thickness.l Reduce potential for rolled-in scale.l Extend rolling campaign length.These systems must also be designed and operated in a manner that will:l Assure good plating of the oil onto the work roll surface.l Maintain stability of mill control systems.l Minimize the environmental impact of vapor emissions and spent fluids.l Prevent clogging of fluid supply lines.The effective implementation of these systems can provide enhance control over the thermal and tribological conditions in the roll bite to achieve objectives for product quality and mill productivity. These systems have undergone development for a number of years and are now being implemented and refined throughout the world.Overview of Chatter and Peeling on Roll SurfacesThe early stands of steel hot finishing mills routinely operate at relatively high loads and relatively low speeds. These operating conditions represent a very aggressive environment for mill work rolls. High loads, combined with other factors, can contribute to mill stand vibrations commonly known as chatter. These vibration produce cyclic loading conditions in the stand, which can produce visible marks on the roll surface. These marks are then transferred to the sheet, producing an undesirable surface quality.The effective implementation of roll gap lubrication technology can make it possible to reduce and/or redistribute loads in the mill, thus decreasing or eliminating chatter. Furthermore, the strip surface temperatures that are the contact time between the strip and the work roll, impacts the temperatures that are reached on the roll surface. Higher temperatures accelerate the formation of oxides on the roll surface. Thin layers of these oxides can then be “peeled off” the roll surface by the alternating shear stresses associated with slip in the roll bite. When this occurs, it results in a roll surface defect commonly called “peeling”.These peeling marks also negatively affect the strip surface quality , producing what is known as rolled-in scale. Solutions to the peeling problem involve establishing a balance between oxides growth and wear at a minimal thickness in the roll bite.Antipeeling and work roll cooling technologies are utilized to achieve this balance. These technologies must be coordinated with the roll gap lubrication systems in order to assure optimal effectiveness of each technology.Overview of System Hardware and OperationThe work roll cooling headers are provided on both the entry and exit sides of the stand. The area of spray coverage in the roll is largest in the exit side. This provides the maximum cooling effect when the roll surface is at its highest temperature shortly after it rotates out of contact with the strip.Work roll cooling headers are also mounted on the entry side of the stand. These entry side headers are disabled when the roll gap lubrication headers are operated, so as not to wash off the oil before it can effectively plate onto the roll surface.The roll gap lubrication headers are also located on the entry side of the stand. They spray an oil/water dispersion onto the roll surface prior to its rotation through the stand entry wiper. As the water component of the dispersion is vaporized, the pressure that is exerted by the wiper enhances the plating of the oil onto the work roll surface.Configuring and operating the system in this manner ensures that the oil is plated onto the work roll surface so that it will enter the roll bite without being washed away. This oil provides the lubrication in the bite to reduce loading in the rolling process.Antipeeling headers are fitted on the entry side of the stand. These headers apply coolant directly onto the strip to reduce its surface temperature before it enters the roll gap.Because of the close proximity to the roll bite, there is a very little time for conduction to redistribute the temperature within the body of the strip. Hence, only the strips surface temperature is significantly reduced before entering the roll bite, and temperature at the core of the strip remain essentially unchanged.The lower strip surface temperature also reduces the resulting roll surface temperature by reducing the driving force for conduction between them. This decreases the rate of formation oxides on the roll surface, which reduces the tendency for peeling.Roll Gap LubricationThe roll gap lubrication headers are supplied with oil/water dispersion. Separate systems are provided for top and bottom headers in each equipped mill stand. The water /oil dispersion is formed in a static mixer located just before the spray header. By creating the dispersion in close proximity to the header, the time for the oil to break out is minimized, and the length of piping subject to clogging by the dispersion is also reduced.The oil flow is provided by metering pumps and is enable only during rolling. Metering pump speed is regulated to maintain a specified volume flowrate for the process. Adjustable throttling valves regulate the water flowrate. Water flow is maintained, even when the oil is shut off, to help clear piping deposits and thereby prevent clogging.The headers spray width is adjusted to the width of the strip being rolled via air-operated shut off valves. This approach provides the dispersion only to the aea where it is required on the work roll barrel. By limiting the rolling operation, the volume of oil consumed, along with the associated operating cost, is minimized.This approach also addresses environmental; considerations, in that the volume of vapor emissions and the volume of waste fluids that require special disposal are reduced. The result is that the headers and spray nozzles provide uniform application of the dispersion to the top and bottom work rolls in the area of contact with the strip.It should also be noted that water quality can significantly affect the performance of the oil/water dispersion. Therefore, the oil supplier must adapt the oil quality to the water quality.Impact of Roll Gap Lubrication and Operating PhilosophiesProperly designed roll gap lubrication systems reduce friction in the roll bite and thereby reduce the resulting rolling load. Although some variations exist, there are predominantly three philosophies that are followed in the operation of roll gap lubrication systems.The first philosophy is “body only”. It is typical of operation for the first stand of the finishing mill, although some roll gap lubrication systems follow this practice on other stands as well. In this philosophy, the oil flow is not enabled until after the strip has threaded through the stand. This provides a higher friction condition during threading to reduce the potential for bite rejection.Note that when RGL is enabled, there is a significant reduction in rolling load. The oil flow is again disabled before tailout, so that any residual oil that remains on the roll surface can be consumed in the process. This restores the effective friction to a higher level prior to threading of the next strip. It also results in a corresponding increase in the rolling load.This approach supports threading operations, but the significant changes in loading that correspond to the activation and deactivation of the roll gap lubrication system produce transients that must be addressed by the mill control systems. The impact of these transients will be discussed later.The second philosophy is “body and tail”. This approach has historically been followed on stands F2-F7. Here, the roll gap lubrication system is enabled after threading, but it is not disabled until tailout is completed. Operating in this manner still produces a load transient at the beginning of the coil, but it eliminates the one at the end.Impact of Oil Volume Flowrate on Rolling Load The load reduction that is afforded by roll gap lubrication depends on a number of factors, one of which is the volume flowrate of oil. Representative tests have been performed to analyze the effect of oil flowrate on rolling load at stands F2-F4. Note that roll gap lubrication is on only the upper work roll of stand F2.Also note that the loading reduction on each of the stands appears to be approaching a limiting value asymptotically, as oil volume flowrate is increased. Hence, there is a limit to the benefit obtained with application oil application. Increasing oil application beyond this point would only increase operating cost and potential environmental issues while providing little or no benefit.During these tests, only the upper header was operating on F2. Hence, the rolling force reduction may be different with both headers operating, but the trend of decreasing benefit with volume flowrate is still visible.Other loading and operating conditions, as well as other oil and water dispersion, may exhibit different volume flowrate requirements to approach this limiting point. Nevertheless, the general behavior of receiving diminishing returns for continued increases in oil volume flowrate is expected to hold for these other applications as well.Control Systems and Roll Gap LubricationIt has been shown that significant changes in stand loading occur when roll gap lubrication is enabled during the rolling of a coil. These changes in loading will have a corresponding impact on roll stack deflections and mass flow in the mill. As a result, when adding roll gap lubrication, the control systems for thickness control, for profile and flatness control, and for tension control must be simultaneously optimized in order to fully realize its benefits.Note that when the roll gap lubrication is enabled, the roll force reductions in these cases are on the order of 36and 44 percent, respectively. These are very significant drops in roll force, and they require a corresponding reduction in roll bending to maintain flat strip and strip profile.Furthermore, most of this roll force reduction occurs over a relatively short period of time. Hence, a rapid control response is requires from the bending systems to maintain good strip shape.Roll Gap Lubrications Impact on Chatter Mill chatter results from vibrations in a stand that subsequently mark the roll surfaces.Chatter problems are frequently addressed by reducing the load in the stand that is experiencing vibration. This load reduction has historically been accomplished by decreasing the reduction that is taken on that stand. This approach requires a redistribution of reductions across the other mill stands, and consequently higher loading on those other stands.Other Potential Benefits of Roll Gap LubricationIt has been shown that roll gap lubrication provides the steel producer with a tool to reduce rolling loads and to correct certain types of chatter problems. Additional benefits, such as improved strip surface quality, extended roll life and other potential benefits, are also reported in literature. A detailed discussion of these topics is outside the scope of this paper; nevertheless, the following comment on the use of roll gap lubrication to enhance strip surface quality and extend roll life is offered for consideration of the reader.Roll gap lubrication systems may reduce strip surface contamination from roll oxides and rolled-in strip scale.This reduction in power consumption is a benefit that is typically achieved with roll gap lubrication technology, but elimination of chatter and improved surface are more frequently cited as the justifiable benefits.ConclusionFollowing is a summary of the main points concerning the application of roll gap lubrication of roll gap lubrication, work roll cooling and antipeeling systems.Roll Gap Lubricationl Must be applied in a manner that enables the oil to effectively plate onto the work roll surface.l Can significantly reduce loading, torque and power requirements in a stand by reducing friction in the roll bite.l Will provide a means to directly reduce chatter by reducing load.l Can also provide a means for redistributing loads among stands to address chatter problems.l Can require significant control system responses to transients in flatness and mass flow if it is enable during rolling.l Can be operated in conjunction with roll cooling and antipeeling systems to function through the length of the coil and thereby avoid these transients.l Will enhance strip surface quality and rolling campaign length.l Will not fix previously existing descaling problems.l Can be operated at a minimum effective volume and width to minimize cost and environment impact.l Can be significantly affected in performance by changes in water composition and quality.l Requires a more sophisticated setup model.Antipeeling Systemsl Reduce the strip surface temperature, and thus lower roll surface temperature. l Reduce oxide formation and peeling as a result of the lower roll surface temperature.l Can be used with roll gap lubrication without removing properly applied oils.Work Roll Cooling Systemsl Must be most effective on the mill exit side, where roll surface temperature is highest.l Must be disabled on the mill entry side when roll gap lubrication is applied there. 附录B 辊缝润滑,工作辊冷却及反剥系统在热轧钢机上的协调应用对于热轧薄板表面质量的需求近年来要求越来越高。在轧钢机上这种对薄板质量的要求已经发展为与提高工业生产力的一致要求和降低成本同等重要。辊缝润滑系统虽然不是灵丹妙药,但在这些客观事实的支持下得到越来越多的关注。特别是辊缝润滑系统已和工作辊冷却系统及反剥系统联合使用,如:l 减少轧制负荷,因此降低潜在的轧制带来的噪音;l 根据能量条件降低轧制扭矩;l 能够在轧机间重新分配负荷,解决噪音问题;l 加大变形量,降低最后的轧件厚度;l 减少潜在的压入尺度;l 增加轧制长度。这些系统必须按照如下的方法设计和操作:l 在工作辊表面上保证高质量的润滑油喷涂;l 保持轧钢机控制系统的稳定性;l 使水汽的蒸发和液体的消耗这些环境的影响达到最小;l 防止液体供应线上的障碍。通过控制轧制时的温度和摩擦条件,这些系统的有效执行能够加大控制,以使产品质量及轧钢机生产力提高。这些系统已经经历了很多年的发展,现在已经应用于全世界。噪音及轧辊表面剥落的概述早期的热轧钢机常规操作标准是相对高的载荷和相对低的速度。这种操作条件对于轧机的工作辊是一个非常好的环境。重载与其他一些因素相结合,能够导致轧机持久的振动,通常被认为是噪音。这些振动产生持久的周期载荷,它们能在轧辊表面产生明显的痕迹。然后这些痕迹被转移到钢板上,进而生产出令人不满意的钢板表面质量。辊缝润滑技术的有效施行使在轧机上减少或者重新分配载荷成为可能,因而降低或消除噪音。此外,轧件表面温度,轧件和工作辊的接触时间,温度影响已经到达了轧辊的表面。高温加快了在轧辊表面上氧化物的形成。这些氧化层通过交替的剪切压力与轧辊咬入结合能够在轧辊表面剥落。当这种情况发生时,它的结果是在轧辊的表面产生了 缺陷,通常叫做“剥落”。这些剥落的痕迹消极地影响了轧件的表面质量,产生了所谓的压入尺度。解决剥落问题需要在轧辊咬入的最小厚度上建立氧化层增长和剥落的平衡。反剥落和工作辊冷却技术在达到这种平衡上派上用场。为了保证每种技术达到最佳的效果这些技术必须与辊缝润滑系统相协调。系统硬件及操作的概述工作辊冷却端在机架进出口都有分布。在轧辊上喷射面积最大的在出口处。这种布置在轧辊表面温度达到最高时提供了最有效的冷却效果瞬间轧辊旋转与轧件分离。工作辊冷却端也被安装在机架的入口处。当辊缝润滑端被应用时这些入口端冷却就会失去作用,因此在它有效地喷涂到轧辊表面之前不要冲刷掉润滑油。辊缝润滑端也被安装在机架的入口侧。它们喷射的油或者是水通过入口的管道优先喷射到轧制的表面。随着水分的蒸发,被管道利用的压力增强了润滑油喷涂到工作辊表面的能力。用这个方法装配和操作这个系统,确保了润滑油喷涂到工作辊的表面,以便在润滑油没有被冲刷掉时进入咬入。为了减小在轧制过程中的载荷,这种油在咬入时提供了润滑剂。反剥落端也被安装在机架的入口侧。反剥落端在轧件进入辊缝前运用冷却剂直接喷到轧件上降低它的表面温度。因为与轧辊咬入处非常接近,在轧件内部仅有非常少的时间传导、分配温度。因此,仅仅轧件表面的温度在进入轧辊咬入之前真正地降低了,而轧件中心部分的温度仍然保持不变。通过减小轧辊和轧件间的轧制力,相对低的轧件表面温度也可以降低轧辊表面温度。 这样降低了在轧辊表面氧化物形成速度,也减少了剥落的倾向。辊缝润滑辊缝润滑头部供给分散的油或水。每台轧机都在上辊和下辊上提供了分离系统。在喷射前水或油形成静态的混合物。通过在非常接近轧辊头部的地方喷射润滑油,使润滑油的滴落时间达到最小,通过喷射也可以减少输送的长度。润滑油仅仅在轧制过程中由计量泵供应。为了保证润滑油流动是特定的值,对于轧制过程计量泵的速度是一个定值。适当调节管道的阀可调整水流动的速度。即使油管关闭,水的流动也是持续的,帮助清理管道的沉淀物从而阻止障碍物。头部喷射宽度的调整是根据轧件被轧制的宽度经过气流阀关闭的。这种方法仅在工作辊需要的地方提供喷射的润滑油。 通过限制喷涂的宽度和仅在轧辊轧制时供油,油量的消耗和与之相关的操作费用都达到最小。这种方法亦考虑到了环境的因素,需要特殊处理的水汽的蒸发体积和污水排放的体积减少了。这样做的结果是头部和喷嘴在工作辊上辊和下辊与轧件连接处供给相同量的润滑油。需注意的是,水的质量能够在很大程度上影响水油分布的工作情况。因此,供油系统必须使油的质量适应水的质量。辊缝润滑及操作系统的影响正确地设计辊缝润滑系统可以减少轧辊咬入时的摩擦,从而减少轧制的负荷。尽管有一些变化存在,在辊缝润滑系统操作上主要有三种操作系统。第一种是“只有辊身”操作系统模型。尽管一些辊缝润滑系统也在其它架轧机上用这种方法,但对于第一架和最后一架轧机这是一种典型的操作系统模型。在这种操作模型中润滑油不流动直到轧件通过轧机,这样在轧制过程中提供了一个高摩擦条件,减少了咬入障碍的潜在可能性。需要注意的是,当RGL可操作时,轧制载荷显著地减少。轧件尾部出来之前,润滑油仍然是不可流动的,以便残留的润滑油保留在轧辊的表面在轧制过程中被消耗。这种重建给下一个轧件的轧制带来了高程度的摩擦条件,也导致了轧制负荷的增加。这种方法提供了一种线性操作,与辊缝润滑
温馨提示:
1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
2: 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
3.本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
提示  人人文库网所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
关于本文
本文标题:立辊轧机主传动系统设计【5张图纸】【优秀】
链接地址:https://www.renrendoc.com/p-423408.html

官方联系方式

2:不支持迅雷下载,请使用浏览器下载   
3:不支持QQ浏览器下载,请用其他浏览器   
4:下载后的文档和图纸-无水印   
5:文档经过压缩,下载后原文更清晰   
关于我们 - 网站声明 - 网站地图 - 资源地图 - 友情链接 - 网站客服 - 联系我们

网站客服QQ:2881952447     

copyright@ 2020-2025  renrendoc.com 人人文库版权所有   联系电话:400-852-1180

备案号:蜀ICP备2022000484号-2       经营许可证: 川B2-20220663       公网安备川公网安备: 51019002004831号

本站为文档C2C交易模式,即用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知人人文库网,我们立即给予删除!