1分形图基本图形以及源程序.doc_第1页
1分形图基本图形以及源程序.doc_第2页
1分形图基本图形以及源程序.doc_第3页
1分形图基本图形以及源程序.doc_第4页
1分形图基本图形以及源程序.doc_第5页
已阅读5页,还剩14页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

分形图基本图形以及源程序第一部分本人新手,如有错误请指正。程序完成于2011/6/17晚间到2011/6/18。很多变量名称采用的是同学的姓名拼音,为的是告诉大家这些都是可以随意命名的变量或函数名,一般大写字母开头的是系统定义的变量不可以随意更改。一、 (*雪花*)源程序lovelyduwangenzhengguojie_List:=Blockweihuayan=,i,wuxiaonan=Lengthzhengguojie,gengping=60Degree,sa=Singengping,ca=Cosgengping,c,d,e,T=ca,-sa,sa,ca, Fori=1,i wuxiaonan,i+,c=zhengguojiei*2/3+zhengguojiei+1/3; e=zhengguojiei/3+zhengguojiei+1*2/3; d=c+T.(e-c); weihuayan=Joinweihuayan,zhengguojiei,c,d,e,zhengguojiei+1; weihuayandongquanfa=0,0,1/2,Sqrt3/2,1,0,0,0;ShowGraphicsLineNestlovelyduwangen,dongquanfa,0,AspectRatioSqrt3/2ShowGraphicsLineNestlovelyduwangen,dongquanfa,5,AspectRatioSqrt3/2基本生成元分形图二、 (*上三角下三角1*)lovelyduwangenzhengguojie_List:=Blockweihuayan=,i, wuxiaonan =Lengthzhengguojie,gengping=60Degree,sa=Singengping,ca=Cosgengping,c,d,g,f,e,T=ca,-sa,sa,ca,S=ca,sa,-sa,ca, Fori=1,i wuxiaonan,i+,c=zhengguojiei*3/4+zhengguojiei+1/4; e=zhengguojiei/2+zhengguojiei+1/2; f=zhengguojiei/4+zhengguojiei+1*3/4; d=c+T.(e-c); g=e+S.(f-e); weihuayan=Joinweihuayan,zhengguojiei,c,d,e,g,f,zhengguojiei+1; weihuayandongquanfa=0,0,1,0;ShowGraphicsLineNestlovelyduwangen,dongquanfa,1,AspectRatioSqrt3/2ShowGraphicsLineNestlovelyduwangen,dongquanfa,4,AspectRatioSqrt3/2基本生成元分形图(*上三角下三角2*)lovelyduwangenzhengguojie_List:=Blockweihuayan=,i, wuxiaonan =Lengthzhengguojie,gengping=60Degree,sa=Singengping,ca=Cosgengping,c,d,g,f,e,T=ca,-sa,sa,ca,S, Fori=1,i wuxiaonan,i+,c=zhengguojiei*3/4+zhengguojiei+1/4; e=zhengguojiei/2+zhengguojiei+1/2; f=zhengguojiei/4+zhengguojiei+1*3/4; d=c+T.(e-c); S=TransposeT; g=e+S.(f-e); weihuayan=Joinweihuayan,zhengguojiei,c,d,e,g,f,zhengguojiei+1; weihuayandongquanfa=0,0,1,0;ShowGraphicsLineNestlovelyduwangen,dongquanfa,1,AspectRatioSqrt3/2ShowGraphicsLineNestlovelyduwangen,dongquanfa,4,AspectRatioSqrt3/2图形同上(*上三角下三角3*)lovelyduwangenzhengguojie_List:=Blockweihuayan=,i, wuxiaonan =Lengthzhengguojie,gengping=90Degree,sa=Singengping,ca=Cosgengping,c,d,d1,g1,g,f,e,T=ca,-sa,sa,ca,S, Fori=1,i wuxiaonan,i+,c=zhengguojiei*3/4+zhengguojiei+1/4; e=zhengguojiei/2+zhengguojiei+1/2; f=zhengguojiei/4+zhengguojiei+1*3/4; d=c+T.(e-c); d1=d+e-c; S=TransposeT; g=e+c-d; g1=g+f-e; weihuayan=Joinweihuayan,zhengguojiei,c,d,d1,e,g,g1,f,zhengguojiei+1; weihuayandongquanfa=0,0,1,0;ShowGraphicsLineNestlovelyduwangen,dongquanfa,1,AspectRatio1/2ShowGraphicsLineNestlovelyduwangen,dongquanfa,4,AspectRatio1/2图形同上三、 (*上正方下正方形*)lovelyduwangenzhengguojie_List:=Blockweihuayan=,i, wuxiaonan =Lengthzhengguojie,gengping=90Degree,sa=Singengping,ca=Cosgengping,c,d,d1,g1,g,f,e,T=ca,-sa,sa,ca,S, Fori=1,i wuxiaonan,i+,c=zhengguojiei*3/4+zhengguojiei+1/4; e=zhengguojiei/2+zhengguojiei+1/2; f=zhengguojiei/4+zhengguojiei+1*3/4; d=c+T.(e-c); d1=e+T.(f-e); S=TransposeT; g=e+S.(f-e); g1=f+S.(f-e); weihuayan=Joinweihuayan,zhengguojiei,c,d,d1,e,g,g1,f,zhengguojiei+1; weihuayandongquanfa=0,0,1,0;ShowGraphicsLineNestlovelyduwangen,dongquanfa,1,AspectRatio1/2ShowGraphicsLineNestlovelyduwangen,dongquanfa,4,AspectRatio1/2基本生成元分形图四、 (*下正方形上正方形*)lovelyduwangenzhengguojie_List:=Blockweihuayan=,i, wuxiaonan =Lengthzhengguojie,gengping=90Degree,sa=Singengping,ca=Cosgengping,c,d,d1,g1,g,f,e,T=ca,-sa,sa,ca,S, Fori=1,i wuxiaonan,i+,c=zhengguojiei*3/4+zhengguojiei+1/4; e=zhengguojiei/2+zhengguojiei+1/2; f=zhengguojiei/4+zhengguojiei+1*3/4; S=TransposeT; d=c+S.(e-c); d1=e+S.(f-e); g=e+T.(f-e); g1=f+T.(f-e); weihuayan=Joinweihuayan,zhengguojiei,c,d,d1,e,g,g1,f,zhengguojiei+1; weihuayandongquanfa=0,0,1,0;ShowGraphicsLineNestlovelyduwangen,dongquanfa,1,AspectRatio1/2ShowGraphicsLineNestlovelyduwangen,dongquanfa,4,AspectRatio1/2基本生成元分形图五、 (*下三角上三角*)lovelyduwangenzhengguojie_List:=Blockweihuayan=,i, wuxiaonan =Lengthzhengguojie,gengping=60Degree,sa=Singengping,ca=Cosgengping,c,d,g,f,e,T=ca,-sa,sa,ca,S, Fori=1,i wuxiaonan,i+,c=zhengguojiei*3/4+zhengguojiei+1/4; e=zhengguojiei/2+zhengguojiei+1/2; f=zhengguojiei/4+zhengguojiei+1*3/4; S=TransposeT; d=c+S.(e-c); g=e+T.(f-e); weihuayan=Joinweihuayan,zhengguojiei,c,d,e,g,f,zhengguojiei+1; weihuayandongquanfa=0,0,1,0;ShowGraphicsLineNestlovelyduwangen,dongquanfa,1,AspectRatioSqrt3/2ShowGraphicsLineNestlovelyduwangen,dongquanfa,5,AspectRatioSqrt3/2基本生成元分形图六、 (*单个上正方*)lovelyduwangenzhengguojie_List:=Blockweihuayan=,i, wuxiaonan =Lengthzhengguojie,gengping=90Degree,sa=Singengping,ca=Cosgengping,c,d,d1,g1,g,f,e,T=ca,-sa,sa,ca,S, Fori=1,i wuxiaonan,i+,c=zhengguojiei*2/3+zhengguojiei+1/3; e=zhengguojiei/3+zhengguojiei+1*2/3; S=TransposeT; d=c+T.(e-c); d1=e+T.(e-c); weihuayan=Joinweihuayan,zhengguojiei,c,d,d1,e,zhengguojiei+1; weihuayandongquanfa=0,0,1,0;ShowGraphicsLineNestlovelyduwangen,dongquanfa,7,AspectRatio1/3ShowGraphicsLineNestlovelyduwangen,dongquanfa,1,AspectRatio1/3基本生成元分形图七、 (*一个正方形向外长大*)lovelyduwangenzhengguojie_List:=Blockweihuayan=,i, wuxiaonan =Lengthzhengguojie,gengping=90Degree,sa=Singengping,ca=Cosgengping,c,d,d1,g1,g,f,e,T=ca,-sa,sa,ca,S, Fori=1,i wuxiaonan,i+,c=zhengguojiei*2/3+zhengguojiei+1/3; e=zhengguojiei/3+zhengguojiei+1*2/3; S=TransposeT; d=c+T.(e-c); d1=e+T.(e-c); weihuayan=Joinweihuayan,zhengguojiei,c,d,d1,e,zhengguojiei+1; weihuayandongquanfa=0,0,1,0,1,-1,0,-1,0,0;ShowGraphicsLineNestlovelyduwangen,dongquanfa,4,AspectRatio1/1ShowGraphicsLineNestlovelyduwangen,dongquanfa,1,AspectRatio1/1基本生成元分形图八、 (*一个正方形向内长大*)lovelyduwangenzhengguojie_List:=Blockweihuayan=,i, wuxiaonan =Lengthzhengguojie,gengping=90Degree,sa=Singengping,ca=Cosgengping,c,d,d1,g1,g,f,e,T=ca,-sa,sa,ca,S, Fori=1,i wuxiaonan,i+,c=zhengguojiei*2/3+zhengguojiei+1/3; e=zhengguojiei/3+zhengguojiei+1*2/3; S=TransposeT; d=c+T.(e-c); d1=e+T.(e-c); weihuayan=Joinweihuayan,zhengguojiei,c,d,d1,e,zhengguojiei+1; weihuayandongquanfa=0,0,1,0,1,1,0,1,0,0;ShowGraphicsLineNestlovelyduwangen,dongquanfa,5,AspectRatio1/1ShowGraphicsLineNestlovelyduwangen,dongquanfa,1,AspectRatio1/1基本生成元分形图九、 (*一个M形状图形*)lovelyduwangenzhengguojie_List:=Blockweihuayan=,i, wuxiaonan =Lengthzhengguojie,gengping=60Degree,sa=Singengping,ca=Cosgengping,c,d,g,f,e,T=ca,-sa,sa,ca,S, Fori=1,i wuxiaonan,i+,c=zhengguojiei*3/4+zhengguojiei+1/4; e=zhengguojiei/2+zhengguojiei+1/2; f=zhengguojiei/4+zhengguojiei+1*3/4; S=TransposeT; d=c+T.(e-c); g=e+T.(f-e); weihuayan=Joinweihuayan,zhengguojiei,c,d,e,g,f,zhengguojiei+1; weihuayandongquanfa=0,0,1,0;ShowGraphicsLineNestlovelyduwangen,dongquanfa,1,AspectRatioSqrt3/8ShowGraphicsLineNestlovelyduwangen,dongquanfa,5,AspectRatioSqrt3/8基本生成元分形图十、 两个上三角形 横线lovelyduwangenzhengguojie_List:=Blockweihuayan=,i, wuxiaonan =Lengthzhengguojie,gengping=60Degree,sa=Singengping,ca=Cosgengping,c,d,g,f,e,e1,T=ca,-sa,sa,ca,S, Fori=1,i wuxiaonan,i+,c=zhengguojiei*4/5+zhengguojiei+1/5; e=zhengguojiei*3/5+zhengguojiei+1*2/5; e1=zhengguojiei*2/5+zhengguojiei+1*3/5; f=zhengguojiei/5+zhengguojiei+1*4/5; S=TransposeT; d=c+T.(e-c); g=e1+T.(f-e1); weihuayan=Joinweihuayan,zhengguojiei,c,d,e,e1,g,f,zhengguojiei+1; weihuayan dongquanfa=0,0,1,0; Show Graphics LineNestlovelyduwangen,dongquanfa,1 , AspectRatio Sqrt3/10 Show Graphics LineNestlovelyduwangen,dongquanfa,5 , AspectRatio Sqrt3/10 生成元分形图十一、 上三角形 横线 下三角形 lovelyduwangenzhengguojie_List:=Blockweihuayan=,i, wuxiaonan =Lengthzhengguojie,gengping=60Degree,sa=Singengping,ca=Cosgengping,c,d,g,f,e,e1,T=ca,-sa,sa,ca,S, Fori=1,i wuxiaonan,i+,c=zhengguojiei*4/5+zhengguojiei+1/5; e=zhengguojiei*3/5+zhengguojiei+1*2/5; e1=zhengguojiei*2/5+zhengguojiei+1*3/5; f=zhengguojiei/5+zhengguojiei+1*4/5; S=TransposeT; d=c+T.(e-c); g=e1+S.(f-e1); weihuayan=Joinweihuayan,zhengguojiei,c,d,e,e1,g,f,zhengguojiei+1; weihuayan dongquanfa=0,0,1,0; Show Graphics LineNestlovelyduwangen,dongquanfa,1 , AspectRatio Sqrt3/5 Show Graphics LineNestlovelyduwangen,dongquanfa,5 , AspectRatio Sqrt3/5 生成元分形图分形图基本图形以及源程序第二部分该程序写的太复杂的,至少看着程序段太多,在本文档系列第三部分我会给一个简单的程序实现它.注意,从word直接拷贝到mathematica,箭头会乱码,请自己改一改如这里的箭头AspectRatio1/GoldenRatio一、 挖空一个黑色三角形sierpinskitris_List:=Blocktmp=,i,p=Lengthtris/3,a,b,c,d,e,f, Fori=0,ip,i=i+1, a=tris3i+1; b=tris3i+2; c=tris3i+3; d=(a+b)/2; e=(a+c)/2; f=(b+c)/2; tmp=Jointmp,a,d,e,d,b,f,e,f,c; tmpShowsierpinskipts_List:=Blocktmp=,i,p=Lengthpts/3, Fori=0,ip,i=i+1,AppendTotmp,Polygonpts3i+1,pts3i+2,pts3i+3; ShowGraphicstmp,AspectRatio1/GoldenRatiotriangle=-1,0,1,0,0,Sqrt3p0=ShowsierpinskiNestsierpinski,triangle,0p1=ShowsierpinskiNestsierpinski,triangle,1p2=ShowsierpinskiNestsierpinski,triangle,2p3=ShowsierpinskiNestsierpinski,triangle,3p4=ShowsierpinskiNestsierpinski,triangle,4ShowGraphicsArrayp1,p2,p3,p4;生成元分形图二、 挖空一个彩色的三角形sierpinskitris_List:=Blocktmp=,i,p=Lengthtris/4,a,b,c,d,e,f, Fori=0,ip,i=i+1, a=tris4i+1; b=tris4i+2; c=tris4i+3; d=(a+b)/2; e=(a+c)/2; f=(b+c)/2; tmp=Jointmp,a,d,e,a,d,b,f,d,e,f,c,e; tmpShowsierpinskipts_List:=Blocktmp=,i,p=Lengthpts/4, Fori=0,ip,i=i+1,(*AppendTotmp,RGBColor1,0,0,Polygonpts4i+1,pts4i+2,pts4i+3,*) AppendTotmp,Thickness.02,RGBColor0,0,1,Linepts4i+1,pts4i+2,pts4i+3,pts4i+1; ShowGraphicstmpShowsierppts_List:=Blocktmp=,i,p=Lengthpts/4, Fori=0,ip,i=i+1,AppendTotmp,RGBColor1,0,0,Polygonpts4i+1,pts4i+2,pts4i+3,pts4i+1; ShowGraphicstmptriangle=-1,0,1,0,0,Sqrt3,-1,0p0=ShowsierpinskiNestsierpinski,triangle,2p1=ShowsierpNestsierpinski,triangle,2Showp0,p1生成元 分形图三、 第一题的逆,填充挖去的部分 彩色swwwierpinskiwtris_List:=Blocktmp=,duu=,mm=,i,j,p=Lengthwtris1/4,dd=

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论