




免费预览已结束,剩余1页可下载查看
下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
圆锥曲线011.设是双曲线的右焦点,双曲线两条渐近线分别为,过作直线的垂线,分别交于、两点,且向量与同向若成等差数列,则双曲线离心率的大小为a2bcd【答案】d【解析】设=md,=m,=m+d,由勾股定理,得 (md)2+m2=(m+d)2解得m=4d设aof=,则cos2=cos=,所以,离心率e =.选d.2.已知直线交于p,q两点,若点f为该椭圆的左焦点,则取最小值的t值为abcd【答案】b【解析】椭圆的左焦点,根据对称性可设,,则,所以,又因为,所以,所以当时,取值最小,选b.3.抛物线的准线与双曲线的两渐近线围成的三角形的面积为 a. b. c. 2 d.【答案】d【解析】抛物线的准线为,双曲线的两渐近线为和,令,分别解得,所以三角形的低为,高为3,所以三角形的面积为,选d.4.已知双曲线的中心在原点,一个焦点为,点p在双曲线上,且线段pf1的中点坐标为,则此双曲线的方程是 ab cd【答案】b【解析】由双曲线的焦点可知,线段pf1的中点坐标为,所以设右焦点为,则有,且,点p在双曲线右支上。所以,所以,所以,所以双曲线的方程为,选b.5.已知抛物线的焦点与双曲线的右焦点重合,抛物线的准线与轴的交点为,点在抛物线上且,则的面积为 (a)4 (b)8 (c)16 (d)32 【答案】d【解析】双曲线的右焦点为,抛物线的焦点为,所以,即。所以抛物线方程为,焦点,准线方程,即,设, 过a做垂直于准线于m,由抛物线的定义可知,所以,即,所以,整理得,即,所以,所以,选d.6.已知、为双曲线c:的左、右焦点,点在上,=,则到轴的距离为 a b c d 【答案】b【解析】由双曲线的方程可知,在中,根据余弦定理可得,即,所以,所以,所以的面积为,又的面积也等于,所以高,即点p到轴的距离为,选b.7.椭圆的左右焦点分别为,若椭圆上恰好有6个不同的点,使得为等腰三角形,则椭圆的离心率的取值范围是 a. b. c. d.【答案】d【解析】当点p位于椭圆的两个短轴端点时,为等腰三角形,此时有2个。,若点不在短轴的端点时,要使为等腰三角形,则有或。此时。所以有,即,所以,即,又当点p不在短轴上,所以,即,所以。所以椭圆的离心率满足且,即,所以选d.8.方程的曲线是 ( )a一个点 b一条直线 c两条直线 d一个点和一条直线【答案】c【解析】由得,即,为两条直线,选c.9.已知双曲线,过其右焦点且垂直于实轴的直线与双曲线交于两点,为坐标原点.若,则双曲线的离心率为(a) (b) (c) (d)【答案】d 【解析】由题意知三角形为等腰直角三角形,所以,所以点,代入双曲线方程,当时,得,所以由,的,即,所以,解得离心率,选d. 10.已知直线和直线,抛物线上一动点到直线 和直线的距离之和的最小值是(a) (b) (c) (d),【答案】b【解析】因为抛物线的方程为,所以焦点坐标,准线方程为。所以设到准线的距离为,则。到直线的距离为,所以,其中为焦点到直线的距离,所以,所以距离之和最小值是2,选b. 11.我们把焦点相同,且离心率互为倒数的椭圆和双曲线称为一对“相关曲线”已知、是一对相关曲线的焦点,是它们在第一象限的交点,当时,这一对相关曲线中双曲线的离心率是() 【答案】a【解析】设椭圆的半长轴为,椭圆的离心率为,则.双曲线的实半轴为,双曲线的离心率为,.,则由余弦定理得,当点看做是椭圆上的点时,有,当点看做是双曲线上的点时,有,两式联立消去得,即,所以,又因为,所以,整理得,解得,所以,即双曲线的离心率为,选a.12.设圆锥曲线的两个焦点分别为、,若曲线上存在点满足:=4:3:2,则曲线的离心率等于( )(a) (b)(c)
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年数控切割工考试题及答案
- 古建筑方案设计投标
- 兽医专业的面试题及答案
- 2025年K2教育STEM课程实施现状与未来发展趋势:效果评估与启示报告
- DB65T 4454-2021 新疆褐牛生产性能测定技术规范
- 课时7.3 万有引力理论的成就-2024-2025学年高中物理同步练习分类专题教学设计(人教版2019必修第二册)
- 2025年制造业数据治理策略与智慧工厂建设报告
- 2025年新能源行业碳足迹评估与碳减排产业趋势预测报告
- 2025年高升专数学试题及答案
- 城乡交流遴选考试题及答案英语
- GB 16807-2025防火膨胀密封件
- 麻醉医生进修汇报课件
- 2025年国企审计笔试题及答案
- 开学第一课+课件-2025-2026学年人教版(2024)七年级英语上册
- 人教版数学三年级上册第五单元《 第02课时 求一个数是另一个数的几倍 》(听评课记录)
- 医院医疗收费培训课件
- 抢救药品的使用规范及观察要点
- 大一农业基础化学课件
- 2025年中国地震局事业单位公开招聘考试历年参考题库含答案详解(5卷)
- 大咯血的急救和护理
- 劳动保障监察条例课件
评论
0/150
提交评论