关于运用放缩法的数列不等式证明.doc_第1页
关于运用放缩法的数列不等式证明.doc_第2页
关于运用放缩法的数列不等式证明.doc_第3页
关于运用放缩法的数列不等式证明.doc_第4页
关于运用放缩法的数列不等式证明.doc_第5页
已阅读5页,还剩4页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

数列不等式是高考的一个考点,这类问题是把数列知识与不等式的内容整合在一起,形成了证明不等式,求不等式中的参数范围,求数列中的最大项,最小项,比较数列中的项的大小关系,研究数列的单调性等不同解题方向的问题,而数列的条件的给出是多种多样的,可以是已知的等差数列,等比数列,也可以是一个递推公式,或者是一个函数解析式。数列不等式的证明和解决,要调动证明不等式的各种手段,如比较法,放缩法,函数法,反证法,均值不等式法,数学归纳法,分析法等等,因此,这类题目从已知条件给出的信息,求解目标需求的信息中,可寻求的解题过程所用的方法是相当丰富的,并且对于考查逻辑推理,演绎证明,运算求解,归纳抽象等理性思维能力以及数学联结能力都是很好的素材。 放缩法放缩法是要证明数列不等式的一种常见方法,如当证明AB成立不容易,而借助一个或多个中间变量通过适当的放大或缩小,以达到证明不等式的方法。放缩法证明不等式的理论依据主要有:(1)不等式的传递性;(2)等量加不等量为不等量;(3)同分子(分母)异分母(分子)的两个分式大小的比较。常用的放缩技巧有:舍掉(或加进)一些项;在分式中放大或缩小分子或分母;应用均值不等式进行放缩。 常用数列不等式证明中的裂项形式:(1)(; (2) (3)(4); (5) (6) (7) 已知各项均为正数的数列的前n项和满足,且(1)求的通项公式;(2)设数列满足,并记为的前n项和,求证:()解:由,解得a11或a12,由假设a1S11,因此a12。又由an+1Sn+1- Sn,得an+1- an-30或an+1-an因an0,故an+1-an不成立,舍去。因此an+1- an-30。从而an是公差为3,首项为2的等差数列,故an的通项为an3n-2。()证法一:由可解得;从而。因此。令,则。因,故.特别的。从而,即。证法二:同证法一求得bn及Tn。由二项式定理知当c0时,不等式成立。由此不等式有。证法三:同证法一求得bn及Tn。令An,Bn,Cn。因,因此。从而 在数列中, ()证明数列是等比数列; ()求数列的前项和; ()证明不等式,对任意皆成立()证明:由题设,得,又,所以数列是首项为,且公比为的等比数列()解:由()可知,于是数列的通项公式为所以数列的前项和()证明:对任意的,所以不等式,对任意皆成立已知函数f(x)=x24,设曲线yf(x)在点(xn,f(xn)处的切线与x轴的交点为(xn+1,u)(u,N +),其中为正实数.()用xx表示xn+1;()若a1=4,记an=lg,证明数列a1成等比数列,并求数列xn的通项公式;()若x14,bnxn2,Tn是数列bn的前n项和,证明Tn3.解析:本题综合考查数列、函数、不等式、导数应用等知识,以及推理论证、计算及解决问题的能力()由题可得所以曲线在点处的切线方程是:即令,得即显然,()由,知,同理故从而,即所以,数列成等比数列故即从而所以()由()知,当时,显然当时,综上, 已知实数列等比数列,其中成等差数列.()求数列的通项公式;()数列的前项和记为证明: 128).解:()设等比数列的公比为,由,得,从而,因为成等差数列,所以,即,所以故() 设数列的首项 (1)求的通项公式; (2)设,证明,其中为正整数 解:(1)由整理得又,所以是首项为,公比为的等比数列,得(2)方法一:由(1)可知,故那么, 又由(1)知且,故,因此为正整数方法二:由(1)可知,因为,所以由可得,即两边开平方得即为正整数 已知数列中,()求的通项公式;()若数列中,证明:,解:()由题设:,所以,数列是首项为,公比为的等比

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论