



免费预览已结束,剩余1页可下载查看
下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
21.2.2公式法教学目标(三维目标)知识技能目标:掌握一元二次方程求根公式的推导,会运用公式法解一元二次方程过程与方法目标:通过求根公式的推导,培养学生数学推理的严密性及严谨性,培养学生准确快速的计算能力情感态度与价值观目标:通过公式的引入,培养学生寻求简便方法的探索精神及创新意识;通过求根公式的推导,渗透分类的思想 教学重点、难点重点:求根公式的推导及 用公式法解一元二次方程难点:对求根公式推导过程中依据的理论的深刻理解关键:掌握一元二次方程的求根公式,并应用求根公式法解简单的一元二次方程课型新授教学准备、教学方法教科书相应内容;集体合作讨论交流,归纳总结预习导航预习教材p912内容板书设计教学过程一、情境导入一、 复习引入【问题】(学生总结,老师点评)1.用配方法解下列方程 (1)6x2-7x+1=0 (2)4x2-3x=522总结用配方法解一元二次方程的步骤。(1)移项;(2)化二次项系数为1;(3)方程两边都加上一次项系数的一半的平方;(4)原方程变形为(x+m)2=n的形式;(5)如果右边是非负数,就可以直接开平方求出方程的解,如果右边是负数,则一元二次方程无解复习配方法解一元二次方程,为继续学习公式法引入作好铺垫二、新知探究(设计活动与知识点相对应)二、 探索新知如果这个一元二次方程是一般形式ax2+bx+c=0(a0),你能否用上面配方法的步骤求出它们的两根,请同学独立完成下面这个问题【问题】已知ax2+bx+c=0(a0)且b2-4ac0,试推导它的两个根为x1=,x2=分析:因为前面具体数字已做得很多,我们现在不妨把a、b、c也当成一个具体数字,根据上面的解题步骤就可以一直推下去 解:移项,得:ax2+bx=-c二次项系数化为1,得x2+x=-配方,得:x2+x+()2=-+()2 即(x+)2= b2-4ac0且4a20 0 直接开平方,得:x+= 即x= x1=,x2=【说明】这里 ()是一元二次方程的求根公式创设问题情境,激发学生兴趣,引出本节内容,导出一元二次方程的求根公式三、例题讲解三、例:利用公式法解下列方程,从中你能发现什么?(1)(2)(3)引导学生总结步骤:确定的值、算出的值、代入求根公式求解在学生归纳的基础上,老师完善以下几点:(1)一元二次方程的根是由一元二次方程的系数确定的;(2)在解一元二次方程时,可先把方程化为一般形式,然后在的前提下,把的值代入 ()中,可求得方程的两个根;(3)我们把公式()称为一元二次方程的求根公式,用此公式解一元二次方程的方法叫公式法;(4)由求根公式可以知道一元二次方程最多有两个实数根例:某数学兴趣小组对关于x的方程(m+1)+(m-2)x-1=0提出了下列问题 (1)若使方程为一元二次方程,m是否存在?若存在,求出m并解此方程 (2)若使方程为一元二次方程m是否存在?若存在,请求出 你能解决这个问题吗? 分析:能(1)要使它为一元二次方程,必须满足m2+1=2,同时还要满足(m+1)0 (2)要使它为一元一次方程,必须满足:或或解:(1)存在根据题意得:m2+1=2 m2=1 m=1 当m=1时,m+1=1+1=20 当m=-1时,m+1=-1+1=0(不合题意,舍去) 当m=1时,方程为2x2-1-x=0 a=2,b=-1,c=-1 b2-4ac=(-1)2-42(-1)=1+8=9 x= x1=1,x2=- 因此,该方程是一元二次方程时,m=1,两根x1=1,x2=-(2)存在根据题意得:m2+1=1,m2=0,m=0因为当m=0时,(m+1)+(m-2)=2m-1=-10所以m=0满足题意当m2+1=0,m不存在 当m+1=0,即m=-1时,m-2=-30所以m=-1也满足题意当m=0时,一元一次方程是x-2x-1=0,解得:x=-1当m=-1时,一元一次方程是-3x-1=0解得x=-因此,当m=0或-1时,该方程是一元一次方程,并且当m=0时,其根为x=-1;当m=-1时,其一元一次方程的根为x=-在教师的引导下,学生回答,教师板书主体探究、探究利用公式法解一元二次方程的一般方法,进一步理解求根公式四、巩固练习 分三个层次 单一知识点相对应练习、知识点综合训练、拔高训练,习题设计有选择余地教材p12 练习第1、2题补充习题:用公式法解下列方程 (1)x2-5x-6=0 (2)7x2+2x-1=0 (3)3x2-5x+2=0 (4)5x2+2x-6=0 (5)4x2
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年河北承德平泉市公开招聘社区工作者97人模拟试卷及答案详解(名师系列)
- 2025年福建省泉州市华侨大学招标与采购管理中心招聘1人考前自测高频考点模拟试题及答案详解一套
- 2025年安徽省储备粮管理有限公司第一批次招聘1人模拟试卷及完整答案详解1套
- 2025年甘肃省民航机场集团校园招聘考前自测高频考点模拟试题及一套参考答案详解
- 2025年安庆医药高等专科学校面向校园招聘21人考前自测高频考点模拟试题及答案详解参考
- 2025年西安经开第七小学招聘数学教师考前自测高频考点模拟试题及1套参考答案详解
- 2025年安徽宿州萧县云水水务社会招聘9人模拟试卷完整参考答案详解
- 2025年射频识别(RFID)技术在工业互联网平台下的设备寿命评估与设备更新策略报告
- 2025年教育游戏化在特殊教育儿童心理辅导中提高学生适应能力的实践报告
- 2025年芜湖经开区招聘35人模拟试卷及答案详解一套
- 数学同步练习册基础模块(上册)参考答案
- 锅炉专工试题
- 水杨酸软膏剂的制备
- 医疗质量与安全教育培训
- 2024年江苏省生态环境监测专业技术人员大比武竞赛备考试题库(含答案)
- 《铁皮石斛的介绍》课件
- JCT478.2-2013 建筑石灰试验方法 第2部分 化学分析方法
- 大数据、智慧城市与智慧交通(上)
- 砌砖抹灰工程劳务承包施工合同范文
- GB/T 19812.2-2017塑料节水灌溉器材第2部分:压力补偿式滴头及滴灌管
- GB/T 19249-2017反渗透水处理设备
评论
0/150
提交评论