高考数学一轮复习 第十一章 复数、算法、推理与证明 第三节 合情推理与演绎推理课件 文.ppt_第1页
高考数学一轮复习 第十一章 复数、算法、推理与证明 第三节 合情推理与演绎推理课件 文.ppt_第2页
高考数学一轮复习 第十一章 复数、算法、推理与证明 第三节 合情推理与演绎推理课件 文.ppt_第3页
高考数学一轮复习 第十一章 复数、算法、推理与证明 第三节 合情推理与演绎推理课件 文.ppt_第4页
高考数学一轮复习 第十一章 复数、算法、推理与证明 第三节 合情推理与演绎推理课件 文.ppt_第5页
已阅读5页,还剩34页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

第三节合情推理与演绎推理 总纲目录 教材研读 1 合情推理 考点突破 2 演绎推理 考点二类比推理 考点一归纳推理 考点三演绎推理 1 合情推理 教材研读 2 演绎推理 1 定义 从一般性的原理出发 推出某个特殊情况下的结论的推理称为演绎推理 简言之 演绎推理是由一般到特殊的推理 2 三段论 是演绎推理的一般模式 包括 i 大前提 已知的一般原理 ii 小前提 所研究的特殊情况 iii 结论 根据一般原理 对特殊情况作出的判断 1 下面几种推理是合情推理的是 由圆的性质类比出球的有关性质 由直角三角形 等腰三角形 等边三角形的内角和是180 归纳出所有三角形的内角和都是180 某次考试张军的成绩是100分 由此推出全班同学的成绩都是100分 三角形的内角和是180 四边形的内角和是360 五边形的内角和是540 由此得出凸n n 3 边形的内角和是 n 2 180 a b c d c 答案c 是类比推理 是归纳推理 不是合情推理 2 1 已知a是三角形一边的长 h是该边上的高 则三角形的面积是ah 如果把扇形的弧长l 半径r分别看成三角形的底边长和高 可得到扇形的面积为lr 2 由1 12 1 3 22 1 3 5 32 可得到1 3 5 2n 1 n2 1 2 两个推理过程分别属于 a 类比推理 归纳推理b 类比推理 演绎推理c 归纳推理 类比推理d 归纳推理 演绎推理 a 答案a 1 三角形的性质与扇形的性质有相似之处 此种推理为类比推理 2 由特殊到一般 此种推理为归纳推理 故选a 3 数列2 5 11 20 x 47 中的x等于 a 28b 32c 33d 27 b 答案b5 2 3 1 11 5 3 2 20 11 3 3 x 20 3 4 32 4 推理 矩形是平行四边形 三角形不是平行四边形 三角形不是矩形 中的小前提是 a b c d 和 答案b由演绎推理三段论可知 是大前提 是小前提 是结论 b 5 观察下列不等式 1 1 1 照此规律 第五个不等式为 答案1 解析左边的式子的通项是1 右边的分母依次增加1 分子依次增加2 还可以发现右边分母与左边最后一项分母的关系 所以第五个不等式为1 6 在平面上 若两个正三角形的边长的比为1 2 则它们的面积比为1 4 类似地 在空间中 若两个正四面体的棱长的比为1 2 则它们的体积比为 1 8 答案1 8 解析 考点一归纳推理命题方向一与数字有关的等式的推理 典例1观察下列等式1 1 1 据此规律 第n个等式为 考点突破 答案1 解析规律为等式左边共有2n项且等式左边分母分别为1 2 2n 分子为1 奇数项为正 偶数项为负 即为1 等式右边共有n项且分母分别为n 1 n 2 2n 分子为1 即为 所以第n个等式为1 典例2 1 设n为正整数 f n 1 计算得f 2 f 4 2 f 8 f 16 3 观察上述结果 可推测一般的结论为 2 2018山东济南质检 已知x 0 观察下列各式 x 2 x 3 x 4 归纳得x n 1 n n 则a 命题方向二与不等式有关的推理 答案 1 f 2n n n 2 nn 解析 1 f 21 f 22 2 f 23 f 24 归纳得f 2n n n 2 第一个式子是n 1的情况 此时a 11 1 第二个式子是n 2的情况 此时a 22 4 第三个式子是n 3的情况 此时a 33 27 归纳可知a nn 典例3有一个奇数组成的数阵排列如下 1371321 591523 111725 1927 29 则第30行从左到右第3个数是1051 命题方向三与数列有关的推理 答案1051 解析观察每一行的第一个数 由归纳推理可得第30行的第1个数是1 4 6 8 10 60 1 929 又第n行从左到右的第2个数比第1个数大2n 第3个数比第2个数大2n 2 所以第30行从左到右的第2个数比第1个数大60 第3个数比第2个数大62 故第30行从左到右第3个数是929 60 62 1051 典例4某种平面分形图如图所示 一级分形图是由一点出发的三条线段 长度均为1 两两夹角为120 二级分形图是从一级分形图的每条线段的末端出发 再生成两条长度为原来的线段 且这两条线段与原线段两两夹角为120 依此规律得到n级分形图 1 n级分形图中共有条线段 2 n级分形图中所有线段长度之和为 命题方向四与图形变化有关的推理 答案 1 3 2n 3 2 9 9 解析 1 由题图知 一级分形图中有3 3 2 3 条线段 二级分形图中有9 3 22 3 条线段 三级分形图中有21 3 23 3 条线段 按此规律 n级分形图中的线段条数为3 2n 3 n n 2 n级分形图是从 n 1 级分形图的每条线段的末端出发 再生成两条长度为原来的线段 n级分形图中第n级的所有线段的长度和bn 3 n n n级分形图中所有线段长度之和sn 3 3 3 3 9 9 典例5 1 2017课标全国 9 5分 甲 乙 丙 丁四位同学一起去向老师询问成语竞赛的成绩 老师说 你们四人中有2位优秀 2位良好 我现在给甲看乙 丙的成绩 给乙看丙的成绩 给丁看甲的成绩 看后甲对大家说 我还是不知道我的成绩 根据以上信息 则 a 乙可以知道四人的成绩b 丁可以知道四人的成绩c 乙 丁可以知道对方的成绩d 乙 丁可以知道自己的成绩 命题方向五与实际问题有关的推理 2 2016课标全国 16 5分 有三张卡片 分别写有1和2 1和3 2和3 甲 乙 丙三人各取走一张卡片 甲看了乙的卡片后说 我与乙的卡片上相同的数字不是2 乙看了丙的卡片后说 我与丙的卡片上相同的数字不是1 丙说 我的卡片上的数字之和不是5 则甲的卡片上的数字是 答案 1 d 2 1和3 解析 1 由题意可知 甲看乙 丙的成绩 不知道自己的成绩 说明乙 丙两人是一个优秀一个良好 则乙看了丙的成绩 可以知道自己的成绩 丁看了甲的成绩 也可以知道自己的成绩 故选d 2 丙的卡片上的数字之和不是5 则丙有两种情况 丙的卡片上的数字为1和2 此时乙的卡片上的数字为2和3 甲的卡片上的数字为1和3 满足题意 丙的卡片上的数字为1和3 此时乙的卡片上的数字为2和3 甲的卡片上的数字为1和2 这时甲与乙的卡片上有相同的数字2 与已知矛盾 故情况 不符合 所以甲的卡片上的数字为1和3 1 1 2017湖北八校联考 有6名选手参加演讲比赛 观众甲猜测 4号或5号选手得第一名 观众乙猜测 3号选手不可能得第一名 观众丙猜测 1 2 6号选手中的一位获得第一名 观众丁猜测 4 5 6号选手都不可能获得第一名 比赛后发现没有并列名次 且甲 乙 丙 丁中只有1人猜对比赛结果 此人是 a 甲b 乙c 丙d 丁 d 答案d若甲猜测正确 则4号或5号得第一名 那么乙猜测也正确 与题意不符 故甲猜测错误 即4号和5号均不是第一名 若丙猜测正确 那么乙猜测也正确 与题意不符 故丙猜测错误 即1 2 6号均不是第一名 故3号是第一名 则乙猜测错误 丁猜测正确 所以选d 1 2中国有个名句 运筹帷幄之中 决胜千里之外 其中的 筹 原意是指 孙子算经 中记载的算筹 古代是用算筹来进行计算 算筹是将几寸长的小竹棍摆在平面上进行运算 算筹的摆放形式有纵横两种形式 如图 表示一个多位数时 像阿拉伯计数一样 把各个数位的数码从左到右排列 但各位数码的筹式需要纵横相同 个位 百位 万位数用纵式表示 十位 千位 十万位用横式表示 以此类推 例如6613用算筹表示就是 则9117用算筹可表示为 a 答案a由定义知 千位 9 为横式 百位 1 为纵式 十位 1 为横式一 个位 7 为纵式 故选a 1 3观察下列等式 1 2 2 3 3 4 4 5 照此规律 答案 解析观察等式右边的规律 第1个数都是 第2个数为n 第3个数为 n 1 典例6 1 在平面几何中 abc中的 acb的平分线ce分ab所成线段的比为 把这个结论类比到空间 在三棱锥a bcd中 如图 平面dec平分二面角a cd b且与ab相交于e 则得到类比的结论是 考点二类比推理 2 已知点a x1 b x2 是函数y ax a 1 的图象上任意不同的两点 依据其图象可知 线段ab总是位于a b两点之间函数图象的上方 因此有结论 成立 运用类比的思想可知 若点a x1 sinx1 b x2 sinx2 是函数y sinx x 0 的图象上任意不同的两点 则类似地有成立 答案 1 2 sin 解析 1 由平面中线段的比转化为空间中面积的比可得 2 依据函数y sinx x 0 的图象可知 线段ab总是位于a b两点之间函数图象的下方 所以有 sin 规律总结解决类比推理问题的方法 1 类比推理是由特殊到特殊的推理 其一般步骤为 找出两类事物之间的相似性或一致性 用一类事物的性质去推测另一类事物的性质 得出一个明确的命题 猜想 2 类比推理的关键是找到合适的类比对象 平面几何中的一些定义 公式 结论等 可以类比到立体几何中 得到类似的结论 2 1给出下面类比推理 其中q为有理数集 r为实数集 c为复数集 由 若a b r 则a b 0 a b 类比推出 若a b c 则a b 0 a b 由 若a b c d r 则复数a bi c di a c b d 类比推出 若a b c d q 则a b c d a c b d 由 若a b r 则a b 0 a b 类比推出 若a b c 则a b 0 a b 由 若x r 则 x 1 1 x 1 类比推出 若z c 则 z 1 1 z 1 其中类比结论正确的个数是 a 1b 2c 3d 4 b 答案b类比结论正确的只有 2 2求的值时 采用了如下方法 令 x 则有x 解得x 负值已舍去 可用类比的方法求得1 的值为 答案 解析令1 x 则有1 x 解得x 负值已舍去 典例7数列 an 的前n项和记为sn 已知a1 1 an 1 sn n 1 2 3 求证 1 数列是等比数列 2 sn 1 4an 考点三演绎推理 规律总结演绎推理的推证规则 1 演绎推理是从一般到特殊的推理 其一般形式是三段论 应用三段论解决问题时 应当首先明确什么是大前提和小前提 如果大前提是显然的 则可以省略 本题中 等比数列的定义在解题中是大前提 由于它是显然的 因此省略不写 2 在推理论证过程中 一些稍复杂的证明题常常要用n个三段论才能完成 3 1已知函数y f x 满足 对任意a b r a b 都有af a bf b a

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论